NANOSPONGE FOR ENHANCING SOLUBILITY AND BIOAVAILABILITY OF ORAL DRUGS: REVIEW

Authors

  • ISHAK E. KERILOS Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City-11829, Cairo, Egypt https://orcid.org/0009-0009-0458-3112
  • HOSSAM S. EL-SAWY Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City-11829, Cairo, Egypt https://orcid.org/0000-0002-7977-6340
  • SHERIF K. ABU ELYAZID Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo-11651, Egypt
  • MAGDY IBRAHIM Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo-11562, Egypt https://orcid.org/0000-0002-0480-7720

DOI:

https://doi.org/10.22159/ijap.2024v16i1.49490

Keywords:

Nanosponge-based delivery systems, Methods of preparations, Cyclodextrins, Cross-linking agents, Systemic delivery, Enhanced oral absorption

Abstract

New developments in nanoparticle-based oral medicine have resulted in a profusion of studies to improve the solubility, permeability, and chemical stability of various medications. Nanosponges (NSs) are one type of carriers utilized in this many carrier systems. NSs are nanosized carriers with a sponge-like shape. They have hydrophilic cavities and hydrophobic branches, which aid in the loading of both hydrophilic and hydrophobic medicines. Nano-sponges have a 3-dimensional network and a nanometric cavity size. NSs are very porous, with the capacity to entrap active moieties and the advantage of controlled release. These tiny sponges circulate in the body to reach a specific place and release the medicine in a controlled and predictable manner, assisting in the resolution of numerous issues such as drug toxicity and low bioavailability. One of their significant impacts is the ability to enhance oral absorption and bioavailability. The primary goal of this review is to provide brief updates on NSs for increasing medicine oral absorption as well as their evolutions in loading drugs for enhancing their oral deliverability and treatment of a variety of diseases.

Downloads

Download data is not yet available.

References

Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008 Mar;60(6):717-33. doi: 10.1016/j.addr.2007.08.043, PMID 18199522.

Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. J Adv Pharm Educ Res. 2012;2(1):32-67.

Hwang SR, Byun Y. Advances in oral macromolecular drug delivery. Expert Opin Drug Deliv. 2014 Dec 31;11(12):1955-67. doi: 10.1517/17425247.2014.945420, PMID 25078141.

Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv. 2014 Nov;32(7):1269-82. doi: 10.1016/j.biotechadv.2014.07.006, PMID 25099657.

Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557-70. doi: 10.1016/j.addr.2011.12.009, PMID 22212900.

Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012 Nov 29;8:2091-9. doi: 10.3762/bjoc.8.235, PMID 23243470.

SS, SA, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system-review. J Pharm Pharm Sci. 2012 Jan 17;15(1):103-11. doi: 10.18433/j3k308, PMID 22365092.

Swaminathan S, Vavia PR, Trotta F, Cavalli R, Tumbiolo S, Bertinetti L. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem. 2013 Jun 13;76(1-2):201-11. doi: 10.1007/s10847-012-0192-y.

Khairnar A, Shelke S, Rathod V, Kalawane Y, Jagtap A. Review on Antihyperlipedemia lipophilic drugs and their novel formulation approaches. Int J Pharm Pharm Sci. 2017;9(9):1. doi: 10.22159/ijpps.2017v9i9.19301.

Ankem B, Kucharlapati SLT, Magapu SD, BB. Nanosponges-a revolutionary targeted drug delivery nanocarrier: a review. Asian J Pharm Clin Res 2023;15(4):3-9. doi: 10.22159/ajpcr.2023.v16i4.46453.

Grunert M, Bohm S, Honig H, Wang D, Lienau C, Runge E. Structural and optical properties of gold nanosponges revealed via 3D nano-reconstruction and phase-field models. Commun Mater. 2023 Mar 8;4(1):20. doi: 10.1038/s43246-023-00346-7.

Sevinç F, Prins JM, Koopmans RP, Langendijk PN, Bossuyt PM, Dankert J. Early switch from intravenous to oral antibiotics: guidelines and implementation in a large teaching hospital. J Antimicrob Chemother. 1999;43(4):601-6. doi: 10.1093/jac/43.4.601, PMID 10350396.

Lee SL, Azmi S, Wong PS. Clinicians’ knowledge, beliefs and acceptance of intravenous-to-oral antibiotic switching, Hospital Pulau Pinang. Med J Malaysia. 2012 Apr;67(2):190-8. PMID 22822642.

Sevinc F, Prins JM, Koopmans RP, Langendijk PNJ, Bossuyt PM, Dankert J. Early switch from intravenous to oral antibiotics: guidelines and implementation in a large teaching hospital. J Antimicrob Chemother. 1999 Apr 1;43(4):601-6. doi: 10.1093/jac/43.4.601, PMID 10350396.

Glemaud I. Use of a physician order entry system to identify opportunities for intravenous to oral levofloxacin conversion. Am J Health Syst Pharm. 2000;57Suppl 3:S14-6. doi: 10.1093/ajhp/57.suppl_3.S14, PMID 11098315.

MacGregor RR, Graziani AL. Oral administration of antibiotics: A rational alternative to the parenteral route. Clin Infect Dis. 1997 Mar 1;24(3):457-67. doi: 10.1093/clinids/24.3.457, PMID 9114201.

Jensen KM, Paladino JA. Cost-effectiveness of abbreviating the duration of intravenous antibacterial therapy with oral fluoroquinolones. Pharmacoeconomics. 1997 Jan;11(1):64-74. doi: 10.2165/00019053-199711010-00008, PMID 10165528.

Galanter W, Liu XF, Lambert BL. Analysis of computer alerts suggesting oral medication use during computerized order entry of i.v. medications. Am J Health Syst Pharm. 2010 Jul 1;67(13):1101-5. doi: 10.2146/ajhp090357, PMID 20554597.

Sosnik A, Imperiale JC, Vazquez Gonzalez B, Raskin MM, Munoz Munoz F, Burillo G. Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids Surf B Biointerfaces. 2015 Dec;136:900-7. doi: 10.1016/j.colsurfb.2015.10.036, PMID 26551867.

Bardelmeijer HA, van Tellingen O, Schellens JHM, Beijnen JH. The oral route for the administration of cytotoxic drugs: strategies to increase the efficiency and consistency of drug delivery. Invest New Drugs. 2000 Aug;18(3):231-41. doi: 10.1023/a:1006469621561, PMID 10958591.

Jain D, Panda AK, Majumdar DK. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech. 2005 Mar;6(1):E100-7. doi: 10.1208/pt060116, PMID 16353953.

Biernacka M, Ilyich T, Zavodnik I, Pałecz B, Stepniak A. Studies of the formation and stability of ezetimibe-cyclodextrin inclusion complexes. Int J Mol Sci. 2021 Dec 31;23(1):455. doi: 10.3390/ijms23010455, PMID 35008881.

Patel K, Sarma V, Vavia P. Design and evaluation of lumefantrine–oleic acid self nanoemulsifying ionic complex for enhanced dissolution. Daru. 2013 Dec 25;21(1):27. doi: 10.1186/2008-2231-21-27, PMID 23531442.

Fujimoto H, Higuchi M, Watanabe H, Koh Y, Ghosh AK, Mitsuya H. P-glycoprotein mediates efflux transport of darunavir in human intestinal caco-2 and ABCB1 gene-transfected renal LLC-PK1 cell lines. Biol Pharm Bull. 2009;32(9):1588-93. doi: 10.1248/bpb.32.1588, PMID 19721237.

Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharm. 2013 Sep 1;63(3):335-58. doi: 10.2478/acph-2013-0021, PMID 24152895.

Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm. 2019 Jun;565(May):333-50. doi: 10.1016/j.ijpharm.2019.05.015, PMID 31082468.

Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem. 2007 Mar 28;57(1-4):89-94. doi: 10.1007/s10847-006-9216-9.

Lembo D, Cavalli R. Nanoparticulate delivery systems for antiviral drugs. Antivir Chem Chemother. 2010 Dec 1;21(2):53-70. doi: 10.3851/IMP1684, PMID 21107015.

Wagle SR, Kovacevic B, Walker D, Ionescu CM, Shah U, Stojanovic G. Alginate-based drug oral targeting using bio-micro/Nanoencapsulation technologies. Expert Opin Drug Deliv. 2020 Oct 2;17(10):1361-76. doi: 10.1080/17425247.2020.1789587, PMID 32597249.

Panda S, Vijayalakshmi S, Pattnaik S, Swain RP. Nanosponges: a novel carrier for targeted drug delivery. Int J PharmTech Res. 2015;8(7):213-24.

Saxena N, Dholia N, Akkireddy S, Singh A, Yadav UCS, Dube CL. Efficient microwave synthesis, functionalisation and biocompatibility studies of SPION-based potential nano-drug carriers. Appl Nanosci. 2020 Feb 7;10(2):649-60. doi: 10.1007/s13204-019-01153-8.

Das MK, Pathak YV. Nanomedicine and nanosafety. In: Das MK, Pathak YV, editors. Nanomedicine and Nanosafety: recent trends and clinical evidences. Berlin: Springer Singapore; 2020. p. 1-635.

Uekama K, Hirayama F, Arima H. Pharmaceutical applications of cyclodextrins and their derivatives. In: Cyclodextrins and their complexes. Wiley; 2006. p. 381-422.

Sharma R, Walker RB, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Educ Res. 2011;45(1):25-31.

Bilal S, Abhishek P, Ankush B, Indrayani R, Manojkumar MN. Nanosponges: an evolutionary trend for targeted drug delivery. IJPSM. 2021 Jun 30;6(6):1-14. doi: 10.47760/ijpsm.2021.v06i06.001.

Trotta F, Vander Tumiatti, Cavalli, Roberta, Roggero CM, Mognetti B. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO2009/003656; 2009.

Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-based nanosponges: overview and opportunities. Front Chem. 2022;10:859406. doi: 10.3389/fchem.2022.859406, PMID 35402388.

Burad S, Markad K, Kulkarni N, Dhole S. Assessment and outcome on preparations, characterization of topical targeted nanosponge based drug delivery: critical review. Asian J Pharm Clin Res. 2023;16(5):19-26. doi: 10.22159/ajpcr.2023.v16i5.46809.

Tiwari K, Bhattacharya S. The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications. J Mater Sci Mater Med. 2022 Mar 4;33(3):28. doi: 10.1007/s10856-022-06652-9, PMID 35244808.

Singh S, Monika K. Nanosponges as emerging carriers for drug delivery. Syst Rev Pharm. 2022;13(1):55-62.

Bhowmik H, Venkatesh DN, Kuila A, Kumar KH. Nanosponges: a review. Int J App Pharm. 2018;10(4):1-5. doi: 10.22159/ijap.2018v10i4.25026.

Ananya KV, Preethi S, Amit B Patil, Gowda DV. Recent review on nano sponge. IJRPS 2018;11(1):1085-96. doi: 10.26452/ijrps.v11i1.1940.

Rao MR, Sonawane A, Sapate S, Paul G, Rohom S. Nanosponges: a multifunctional drug delivery system. Int J All Res Educ Sci Methods. 2021;9(5):2588-99.

Asfaram A, Ghaedi M, Dashtian K. Ultrasound assisted combined molecularly imprinted polymer for selective extraction of nicotinamide in human urine and milk samples: spectrophotometric determination and optimization study. Ultrason Sonochem. 2017 Jan;34:640-50. doi: 10.1016/j.ultsonch.2016.06.018, PMID 27773291.

Sharma P, Sharma A, Gupta A. Nanosponges: as a dynamic drug delivery approach for targeted delivery. Int J App Pharm. 2023;15(3):1-11. doi: 10.22159/ijap.2023v15i3.46976.

Rao MRP, Bhingole RC. Nanosponge-based pediatric-controlled release dry suspension of gabapentin for reconstitution. Drug Dev Ind Pharm. 2015 Dec 2;41(12):2029-36. doi: 10.3109/03639045.2015.1044903, PMID 26006328.

Liu Y, He JH, Yu JY. Bubble-electrospinning: a novel method for making nanofibers. J Phys.: Conf Ser. 2008 Feb 1;96(1):012001. doi: 10.1088/1742-6596/96/1/012001.

Singireddy A, Rani Pedireddi S, Nimmagadda S, Subramanian S. Beneficial effects of microwave-assisted heating versus conventional heating in synthesis of cyclodextrin-based nanosponges. Mater Today Proc. 2016;3(10):3951-9. doi: 10.1016/j.matpr.2016.11.055.

Zainuddin R, Zaheer Z, Sangshetti JN, Momin M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev Ind Pharm. 2017 Dec 2;43(12):2076-84. doi: 10.1080/03639045.2017.1371732, PMID 28845699.

Binti Zainuddin AN, Binti Mukri M, Binti Nik Ab Aziz NNS, Bin Mohamed Yusof MKT. Study of nano-kaolinite properties in clay liner application. Mater Sci Forum. 2017 Mar;889:239-42. doi: 10.4028/www.scientific.net/MSF.889.239.

Kardooni R, Kiasat AR, Eskandari Sabzi N. Hyper-cross-linked β-cyclodextrin nanosponge: a three-dimensional, porous and biodegradable catalyst in the one-pot synthesis of kojic acid-based heterocyclic compounds. Res Chem Intermed. 2020 Mar 21;46(3):1857-68. doi: 10.1007/s11164-019-04067-w.

Rao BN, Reddy KR, Fathima SR, Preethi P. Design, development and evaluation of diltiazem hydrochloride loaded nanosponges for oral delivery. Int J Curr Pharm Sci. 2020;12(5):116-22. doi: 10.22159/ijcpr.2020v12i5.39784.

Solunke RS, Borge UR, Murthy K, Deshmukh MT, Shete RV. Formulation and evaluation of gliclazide nanosponges. Int J App Pharm. 2019 Oct 5;11(6):181-9. doi: 10.22159/ijap.2019v11i6.35006.

Ilyas F, Jamsahid M, Bashir I, Aslam R, Mehboob T, Tabassam N. Solvent diffusion method: an effective approach to formulate nanosponges loaded with naproxen sodium. RADS J Pharm Pharm Sci. 2020 Nov 11;8(2):74-80. doi: 10.37962/jpps.v8i2.338.

Bergal A, Elmas A, Akyüz G. A new type and effective approach for anticancer drug delivery application: nanosponge. Nano Res Appl. 2019;5(3):1-10.

Swaminathan S, Cavalli R, Trotta F. Cyclodextrin‐based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Jul 22;8(4):579-601. doi: 10.1002/wnan.1384, PMID 26800431.

Ul ain Q, Abbas N, Irfan M, Hussain A, Arshad MS, Hussain SZ. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Shoaib Trop J Pharm Res. 2018 Oct 5;17(8):1465.

Hanafy A, Spahn Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev. 2007 Jul 10;59(6):419-26. doi: 10.1016/j.addr.2007.04.005, PMID 17566595.

Zhang Y, Cui YL, Gao LN, Jiang HL. Effects of β-cyclodextrin on the intestinal absorption of berberine hydrochloride, a P-glycoprotein substrate. Int J Biol Macromol. 2013 Aug;59:363-71. doi: 10.1016/j.ijbiomac.2013.04.074, PMID 23664937.

Osmani RA, Thirumaleshwar S, Bhosale RR, Kulkarni P. Nanosponges: the spanking accession in drug delivery-an updated comprehensive review. Pharm Sin. 2014;5(6):7-21.

Sapino S, Carlotti ME, Cavalli R, Ugazio E, Berlier G, Gastaldi L. Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. J Incl Phenom Macrocycl Chem. 2013 Feb 12;75(1-2):69-76. doi: 10.1007/s10847-012-0147-3.

Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010 Aug 30;17(6):419-25. doi: 10.3109/10717541003777233, PMID 20429848.

Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm Dev Technol. 2013 Jun 1;18(3):619-25. doi: 10.3109/10837450.2011.649855, PMID 22235935.

Shende PK, Trotta F, Gaud RS, Deshmukh K, Cavalli R, Biasizzo M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J Incl Phenom Macrocycl Chem. 2012 Dec 13;74(1-4):447-54. doi: 10.1007/s10847-012-0140-x.

Shende PK, Gaud RS, Bakal R, Patil D. Effect of inclusion complexation of meloxicam with β-cyclodextrin-and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf B Biointerfaces. 2015 Dec;136:105-10. doi: 10.1016/j.colsurfb.2015.09.002, PMID 26364091.

Gaber DA, Radwan MA, Alzughaibi DA, Alail JA, Aljumah RS, Aloqla RM. Formulation and evaluation of piroxicam nanosponge for improved internal solubility and analgesic activity. Drug Deliv. 2023 Dec 31;30(1):2174208. doi: 10.1080/10717544.2023.2174208, PMID 36744372.

Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem. 2013 Dec 23;77(1-4):135-45. doi: 10.1007/s10847-012-0224-7.

Zidan MF, Ibrahim HM, Afouna MI, Ibrahim EA. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev Ind Pharm. 2018 Aug 3;44(8):1243-53. doi: 10.1080/03639045.2018.1442844, PMID 29452493.

Khafagy ES, Abu Lila AS, Sallam NM, Sanad RAB, Ahmed MM, Ghorab MM. Preparation and characterization of a novel mucoadhesive carvedilol nanosponge: a promising platform for buccal anti-hypertensive delivery. Gels. 2022 Apr 11;8(4):235. doi: 10.3390/gels8040235, PMID 35448136.

Shripathy D, Ar S, As P, Chandur V, Kk K. Formulation, characterization and optimization of glibenclamide loaded nanosponges. Int J Pharm Res Appl. 2021;6(5):117-35.

Manyam N, Kumar K, Budideti R, Mogili S. Formulation and in vitro evaluation of nanosponge loaded extended-release tablets of trimethoprim. UPI J Pharm Heal Sci. 2018;1(1):78-86.

Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D. Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm. 2013 Feb;443(1-2):262-72. doi: 10.1016/j.ijpharm.2012.12.031, PMID 23279938.

Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem. 2006 Oct 10;56(1-2):209-13. doi: 10.1007/s10847-006-9085-2.

Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J. 2020 Mar;28(3):349-61. doi: 10.1016/j.jsps.2020.01.016, PMID 32194337.

Appleton SL, Tannous M, Argenziano M, Muntoni E, Rosa AC, Rossi D. Nanosponges as protein delivery systems: insulin, a case study. Int J Pharm. 2020 Nov;590(May):119888. doi: 10.1016/j.ijpharm.2020.119888, PMID 32950667.

Bakliwal AA, Jat DS, Talele SG, Jadhav AG. Formulation and evaluation of nateglinide nanosponges. Indian Drugs. 2018 Feb 26;55(2):27-35. doi: 10.53879/id.55.02.10717.

Pandya KD, Shah NV, Gohil DY, Seth AK, Aundhia CJ, Patel SS. Development of risedronate sodium-loaded nanosponges by experimental design: optimization and in vitro characterization. Indian J Pharm Sci. 2019;81(2):309-16. doi: 10.36468/pharmaceutical-sciences.512.

Published

01-01-2024

How to Cite

KERILOS, I. E., EL-SAWY, H. S., ABU ELYAZID, S. K., & IBRAHIM, M. (2024). NANOSPONGE FOR ENHANCING SOLUBILITY AND BIOAVAILABILITY OF ORAL DRUGS: REVIEW. International Journal of Applied Pharmaceutics, 16(1), 9–17. https://doi.org/10.22159/ijap.2024v16i1.49490

Issue

Section

Review Article(s)