APPROACH TO OPTIMIZE THE SELF-MICROEMULSIFYING DRUG DELIVERY SYSTEM FOR AZILSARTAN MEDOXOMIL USING BOX BEHNKEN DESIGN AND DESIRABILITY FUNCTION

Authors

  • P. V. KAMALA KUMARI Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam-530049, India
  • G. LIKHITHA Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam-530049, India
  • SHEIK JAKIR HUSSAIN MUSTAQ Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam-530049, India

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49519

Keywords:

Box behnken design, Azilsartan, SMEDDS

Abstract

Objective: Develop and optimize a novel self-micro emulsifying drug delivery system (SMEDDS) for enhancing the water solubility of Azilsartan (AZL) by employing the Box-Behnken design and the desirability function.

Methods: The formulation of AZL-SMEDDS consists of clove oil (oil component), Tween 20 (surfactant), propylene glycol (co-surfactant) as the independent variables and the active drug. Using a 3-level Design, the impact of independent variables on the formulation was examined. These variables' specified ranges are 20-40 mg, 50-80 mg, and 5-30 mg for X1, X2 and X3 respectively. Particle size (Y1), PDI (Y2), and dissolution % (Y3) were the response variables investigated in this study.

Results: The results indicated that the optimal values for Clove oil (X1), Tween 20 (X2), and Propylene glycol (X3) were determined to be 28.69, 76.45, and 24.93 (mg), respectively. Based on these optimized conditions, the predicted data points for the response variables Particle Size (Y1), Polydispersity (Y2), and dissolution % (Y3) were determined to be 59.85 nm, 0.729 and 55.406%, respectively.

Conclusion: The empirical results obtained from the optimized formulation exhibited a strong correlation with the predicted values. The optimized AZL-SMEDDS formulation demonstrated a rapid rate of drug solubility and greater bioavailability than AZL powder.

Downloads

Download data is not yet available.

References

Thomas N, Rades T, Müllertz A. Recent developments in oral lipid-based drug delivery. J Drug Deliv Sci Technol. 2013;23(4):375-82. doi: 10.1016/S1773-2247(13)50054-2.

Lennernas H, Abrahamsson B, Persson EM, Knutson L. Oral drug absorption and the biopharmaceutics classification system. J Drug Deliv Sci Technol. 2007;17(4):237-44. doi: 10.1016/S1773-2247(07)50090-0.

Prajapat MD, Patel NJ, Bariya A, Patel SS, Butani SB. Formulation and evaluation of self-emulsifying drug delivery system for nimodipine, a BCS class II drug. J Drug Deliv Sci Technol. 2017;39:59-68. doi: 10.1016/j.jddst.2017.02.002.

Balata GF, Essa EA, Shamardl HA, Zaidan SH, Abourehab MA. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des Devel Ther. 2016;10:117-28. doi: 10.2147/DDDT.S95905, PMID 26792979.

Qin XL, Bi HC, Wang XD, Li JL, Wang Y, Xue XP. Mechanistic understanding of the different effects of wuzhi tablet (Schisandra sphenanthera extract) on the absorption and first-pass intestinal and hepatic metabolism of tacrolimus (FK506). Int J Pharm. 2010;389(1-2):114-21. doi: 10.1016/j.ijpharm.2010.01.025, PMID 20097278.

Tran PH, Tran TT, Piao ZZ, Van Vo TV, Park JB, Lim J. Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion. Int J Pharm. 2013;450(1-2):79-86. doi: 10.1016/j.ijpharm.2013.04.022, PMID 23612354.

Rekha MS, Sultana SK, Mahathi K, Parveen P, Prathima B, Devi AS. Formulation and evaluation of fast-dissolving buccal film containing isradipine solid dispersion. Am J PharmTech Res. 2015;5(2):221-47.

Xiong R, Lu W, Li J, Wang P, Xu R, Chen T. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int J Pharm. 2008;350(1-2):338-43. doi: 10.1016/j.ijpharm.2007.08.036, PMID 17920794.

Prajapati JB, Katariya H, Patel R. Peyer’e patch targeting of isradipine loaded solid lipid nanoparticles: it’s cellular uptake study. J Drug Deliv Sci Technol. 2018;43:318-26. doi: 10.1016/j.jddst.2017.10.017.

Stegemann S, Leveiller F, Franchi D, De Jong H, Linden H. When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci. 2007;31(5):249-61. doi: 10.1016/j.ejps.2007.05.110, PMID 17616376.

Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25(1):47-58. doi: 10.1016/S0169-409X(96)00490-5.

Bobbala SK, Veerareddy PR. Formulation, evaluation, and pharmacokinetics of isradipine proliposomes for oral delivery. J Liposome Res. 2012;22(4):285-94. doi: 10.3109/08982104.2012.697067, PMID 22762199.

Veiga F, Teixeira Dias JJC, Kedzierewicz F, Sousa A, Maincent P. Inclusion complexation of tolbutamide with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Int J Pharm. 1996;129(1-2):63-71. doi: 10.1016/0378-5173(95)04243-1.

Ogawa N, Nagase H, Loftsson T, Endo T, Takahashi C, Kawashima Y. Crystallographic and theoretical studies of an inclusion complex of β-cyclodextrin with fentanyl. Int J Pharm. 2017;531(2):588-94. doi: 10.1016/j.ijpharm.2017.06.081, PMID 28663084.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304-16. doi: 10.1016/j.ajps.2014.05.005.

Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12(3):397-406. doi: 10.1208/s12248-010-9203-3, PMID 20458565.

Ankenman BE, Dean AM. Quality improvement and robustness via design of experiments. Handb Stat. 2003;22:263-317. doi: 10.1016/S0169-7161(03)22010-1.

Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM. Response surface methodology: a retrospective and literature survey. J Qual Technol. 2004;36(1):53-77. doi: 10.1080/00224065.2004.11980252.

Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22(1):27-105. doi: 10.1615/critrevtherdrugcarriersyst.v22.i1.20, PMID 15715503.

Sun Y, Li T, Yan J, Liu J. Technology optimization for polysaccharides (POP) extraction from the fruiting bodies of pleurotus ostreatus by box–behnken statistical design. Carbohydr Polym. 2010;80(1):242-7. doi: 10.1016/j.carbpol.2009.11.018.

Nazzal S, Khan MA. Response surface methodology for the optimization of ubiquinone self-nanoemulsified drug delivery system. AAPS PharmSciTech. 2002;3(1):E3. doi: 10.1208/pt030103, PMID 12916956.

Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a box-Behnken design. Int J Nanomedicine. 2011;6:683-92. doi: 10.2147/IJN.S17386, PMID 21556343.

Madan JR, Pawar KT, Dua K. Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy. Int J Pharm Investig. 2015;5(2):114-20. doi: 10.4103/2230-973X.153390, PMID 25838997.

Nasr A, Gardouh A, Ghorab M. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics. 2016;8(3):20. doi: 10.3390/pharmaceutics8030020, PMID 27355963.

Atef E, Belmonte AA. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur J Pharm Sci. 2008;35(4):257-63. doi: 10.1016/j.ejps.2008.07.004, PMID 18706499.

Kang MJ, Kim HS, Jeon HS, Park JH, Lee BS, Ahn BK. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-micro emulsifying drug delivery system. Drug Dev Ind Pharm. 2012;38(5):587-96. doi: 10.3109/03639045.2011.619194, PMID 21988221.

Kamala Kumari PV, Yarraguntla SR, Sharmila M, Harika V. Application of box-behnken design for formulation parameters of eslicarbazepine tablets. Indian J Pharm Sci. 2021;83(3). doi: 10.36468/pharmaceutical-sciences.808.

Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol. 1980;12(4):214-9. doi: 10.1080/00224065.1980.11980968.

Kim KJ, Lin DK. Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions. J R Stat Soc C. 2000;49(3):311-25.

Avachat AM, Patel VG. Self-nanoemulsifying drug delivery system of stabilized ellagic acid–phospholipid complex with improved dissolution and permeability. Saudi Pharm J. 2015;23(3):276-89. doi: 10.1016/j.jsps.2014.11.001, PMID 26106276.

Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43(1):223-5. doi: 10.1111/j.1558-5646.1989.tb04220.x, PMID 28568501.

Kamala Kumari PVK, Vastav MSS, Rao YS. Development and optimization of orodispersible tablets of fexofenadine hydrochloride (FFH) by box-Behnken statistical design (BBD). Int J Drug Deliv Technol. 2022;12(3):1357-66. doi: 10.25258/ijddt.12.3.71.

Beg S, Swain S, Singh HP, Patra ChN, Rao ME. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech. 2012;13(4):1416-27. doi: 10.1208/s12249-012-9865-5, PMID 23070560.

Sisinthy SP, Rao NK, Sarah CYL. Design, optimization and in vitro characterization of self-nano emulsifying drug delivery system of olmesartanmedoxomil. Int J Pharm Pharm Sci. 2016;9(1):94.

Saini K, Gaba P, Singh J. Design, development and evaluation of nanoemulsion gel of salicylic acid. Int J Innov Pharm Sci Res. 2014;2:1168-91.

Derringer GC. A balancing act-optimizing a product's properties. Qual Prog. 1994;27(6):51-8.

Wiącek A, Chibowski E. Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloids Surf A Physicochem Eng Aspects. 1999;159(2-3):253-61. doi: 10.1016/S0927-7757(99)00281-2.

Published

07-03-2024

How to Cite

KUMARI, P. V. K., LIKHITHA, G., & HUSSAIN MUSTAQ, S. J. (2024). APPROACH TO OPTIMIZE THE SELF-MICROEMULSIFYING DRUG DELIVERY SYSTEM FOR AZILSARTAN MEDOXOMIL USING BOX BEHNKEN DESIGN AND DESIRABILITY FUNCTION. International Journal of Applied Pharmaceutics, 16(2), 92–100. https://doi.org/10.22159/ijap.2024v16i2.49519

Issue

Section

Original Article(s)