STATISTICAL OPTIMIZATION AND EVALUATION OF IN SITU GEL FOR THE OCULAR DELIVERY OF CROMOLYN SODIUM

Authors

  • DEVIKA NAYAK Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India https://orcid.org/0000-0001-6869-9004
  • HARSHA VARDHANI KONDEPATI Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
  • MAHALAXMI RATHNANAND Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India https://orcid.org/0000-0002-6339-2836
  • VAMSHI KRISHNA TIPPAVAJHALA Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India https://orcid.org/0000-0001-6540-9550

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49781

Keywords:

In situ gel, Cromolyn sodium, Conjunctivitis, Ocular delivery

Abstract

Objective: The study aimed to develop and optimize cromolyn sodium-based ocular in situ gel to improve the ophthalmic contact period and provide sustained drug release for treating allergic conjunctivitis.

Methods: Formulations were prepared using sodium alginate and HPMC K4M (Hydroxypropyl Methylcellulose) polymers and were characterized and evaluated for viscosity, gelling time, in vitro drug release, and optimized using a factorial 32 DOE design (Version 11; Design Expert® software). The resulting cromolyn sodium-based formulation was tested for hyperemia and eye-scratching behavior in Wistar albino rats.

Results: Increased polymer concentrations resulted in higher viscosity with decreased gelling time and in vitro drug release. The optimized formulation achieved a viscosity of 15.350 cps, a gelling time of 55.137 s, and sustained drug release of 92.61% over 12 h. The in vivo pharmacodynamic study of the optimized formulation showed a significant decrease in the frequency of eye-scratching behaviour (7.525) at a significance level of (**p<0.01) and hyperemia (1.125) (***p<0.001, *p<0.05) compared to negative and positive control indicating that the developed in situ formulation improved the drug's therapeutic effectiveness by extending its duration within the cul de sac.

Conclusion: In light of these findings, this optimized cromolyn sodium in situ gel holds promise as a viable alternative to conventional eye drops

Downloads

Download data is not yet available.

References

Azari AA, Barney NP. Conjunctivitis: a systematic review of diagnosis and treatment. JAMA. 2013;310(16):1721-9. doi: 10.1001/jama.2013.280318, PMID 24150468.

Sattar SA, Dimock KD, Ansari SA, Springthorpe VS. Spread of acute hemorrhagic conjunctivitis due to enterovirus‐70: effect of air temperature and relative humidity on virus survival on fomites. J Med Virol. 1988;25(3):289-96. doi: 10.1002/jmv.1890250306, PMID 2844979.

O’Brien TP, Jeng BH, McDonald M, Raizman MB. Acute conjunctivitis: truth and misconceptions. Curr Med Res Opin. 2009;25(8):1953-61. doi: 10.1185/03007990903038269, PMID 19552618.

Smith AF, Waycaster C. Estimate of the direct and indirect annual cost of bacterial conjunctivitis in the United States. BMC Ophthalmol. 2009;9(1):13. doi: 10.1186/1471-2415-9-13, PMID 19939250.

Hu FR, Wang IJ, Chen WL, Hou YC. A double-masked study to compare the efficacy and safety of topical cromolyn for the treatment of allergic conjunctivitis. J Formoson Med Assoc Liu Y lin. 2011;110(11):690-4. doi: 10.1016/j.jfma.2011.09.004.

Rodriguez I, Flores Bello J, Marie Serrano Valcarcel J, Lopez Mejias V. Design of potential pharmaceutical-based metal complexes derived from cromolyn a mast cell stabilizer. ACS Omega. 2020;5(46):29714-21. doi: 10.1021/acsomega.0c03320, PMID 33251407.

Alani AWG, Robinson JR. Mechanistic understanding of oral drug absorption enhancement of cromolyn sodium by an amino acid derivative. Pharm Res. 2008;25(1):48-54. doi: 10.1007/s11095-007-9438-6, PMID 17846867.

Minutello K, Gupta V. Cromolyn sodium. InStatPearls. StatPearls Publishing; 2022.

Khokhar P, Shukla V. Ocular drug delivery system-a review based on ocuserts. Int J Pharmacol Res. 2014;3(38):29-41.

Shinde UA, Shete JN, Nair HA, Singh KH. Eudragit RL100-based microspheres for ocular administration of azelastine hydrochloride. J Microencapsul. 2012;29(6):511-9. doi: 10.3109/02652048.2012.665088, PMID 22375685.

Agrawal AK, Das M, Jain S. In situ gel systems as ”smart” carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012;9(4):383-402. doi: 10.1517/17425247.2012.665367, PMID 22432690.

Soniya RD, Dev A, Rathod S, Deshmukh G. An overview of in situ gelling systems. Pharm Biol Eval. 2016;3(1):60-9.

Deka M, Ahmed AB, Chakraborty J. Development, evaluation and characteristics of ophthalmic in situ gel system: a review. Int J Curr Pharm Sci. 2019;11(4):47-53. doi: 10.22159/ijcpr.2019v11i4.34949.

Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016;6:1-6. doi: 10.1016/j.rinphs.2015.06.001, PMID 26949596.

Mandal S, Thimmasetty MK, Prabhushankar G, Geetha M. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Investig. 2012;2(2):78-82. doi: 10.4103/2230-973X.100042, PMID 23119236.

Patil S, Kadam A, Bandgar S, Patil S. Formulation and evaluation of an in situ gel for ocular drug delivery of anticonjunctival drug. Cellul Chem Technol. 2015;49(1):35-40.

Singh M, Dev D. Acacia catachu gum in situ forming gels with prolonged retention time for ocular drug delivery. Asian J Pharm Clin Res. 2022;15(9):33-40. doi: 10.22159/ajpcr.2022.v15i9.45269.

Obiedallah MM, Abdel Mageed AM, Elfaham TH. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm J. 2018;26(7):909-20. doi: 10.1016/j.jsps.2018.01.005, PMID 30416345.

Vodithala S, Khatry S, Shastri N, Sadanandam M. Formulation and evaluation of ocular gels of ketorolac tromethamine. Int J Curr Pharm Res. 2010;2(3):33-8.

Prabhu A, Koland M. Development and evaluation of an in situ thermogelling system of ofloxacin for controlled ocular delivery. Asian J Pharm Clin Res. 2019;12(3):567-70. doi: 10.22159/ajpcr.2019.v12i3.31233.

Nair AB, Shah J, Jacob S, Al-Dhubiab BE, Sreeharsha N, Morsy MA. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLOS ONE. 2021;16(3):e0248857. doi: 10.1371/journal.pone.0248857, PMID 33739996.

Al-Juboori ZA, Mahdi ZH, Alhamdany AT. Formulation and evaluation of ocular in-situ gelling system containing ciprofloxacin and naproxen sodium. Res J Pharm Technol. 2021;14(1):91-5. doi: 10.5958/0974-360X.2021.00017.2.

Groneberg DA, Bielory L, Fischer A, Bonini S, Wahn U. Animal models of allergic and inflammatory conjunctivitis. Allergy. 2003;58(11):1101-13. doi: 10.1046/j.1398-9995.2003.00326.x, PMID 14616119.

Calonge MC, Pastor JC, Herreras JM, González JL. Pharmacologic modulation of vascular permeability in ocular allergy in the rat. Invest Ophthalmol Vis Sci. 1990;31(1):176-80. PMID 2105283.

Minami K, Kamei C. A chronic model for evaluating the itching associated with allergic conjunctivitis in rats. Int Immunopharmacol. 2004;4(1):101-8. doi: 10.1016/j.intimp.2003.10.013, PMID 14975364.

Shinde UA, Shete JN, Nair HA, Singh KH. Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine. Pharm Dev Technol. 2014;19(7):813-23. doi: 10.3109/10837450.2013.836217, PMID 24032373.

Satyam SM, Adiga S, Chogtu B, Laxminarayana Bairy K, Pirasanthan R, Vaishnav RL. Effect of fucithalmic and sofinox eye drops on experimental allergic conjunctivitis in rats. Int J Pharm Pharm Sci. 2014;6(11):458-60.

Nagarwal RC, Srinatha A, Pandit JK. In situ forming formulation: development, evaluation, and optimization using 3(3) factorial design. AAPS PharmSciTech. 2009;10(3):977-84. doi: 10.1208/s12249-009-9285-3, PMID 19636710.

Jain P, Jaiswal CP, Mirza MA, Anwer MK, Iqbal Z. Preparation of levofloxacin loaded in situ gel for sustained ocular delivery: in vitro and ex vivo evaluations. Drug Dev Ind Pharm. 2020;46(1):50-6. doi: 10.1080/03639045.2019.1698598, PMID 31818154.

Okur NU, Yozgatli V, Okur ME. In vitro–in vivo evaluation of tetrahydrozoline-loaded ocular in situ gels on rabbits for allergic conjunctivitis management. Drug Dev Res. 2020;81(6):716-27. doi: 10.1002/ddr.21677, PMID 32359095.

Parthiban KG, Manivannan R, Kumar BS, Ahasan MB. Formulation and evaluation of ketorolac ocular pH-triggered in-situ gel. Int J Drug Dev Res. 2010;2(3):459-67.

Nanjwade BK, Deshmukh RV, Gaikwad KR, Parikh KA, Manvi FV. Formulation and evaluation of micro hydrogel of moxifloxacin hydrochloride. Eur J Drug Metab Pharmacokinet. 2012;37(2):117-23. doi: 10.1007/s13318-011-0070-9, PMID 22015966.

Modi D, Mohammad WMH, Warsi MH, Garg V, Bhatia M, Kesharwani P. Formulation development, optimization, and in vitro assessment of thermoresponsive ophthalmic pluronic F127-chitosan in situ tacrolimus gel. J Biomater Sci Polym Ed. 2021;32(13):1678-702. doi: 10.1080/09205063.2021.1932359, PMID 34013840.

Sawarkar S, Ravikumar P, Pashte P. In situ ophthalmic gel forming Solution of moxifloxacin hydrochloride for sustained ocular delivery. Int J Pharm Sci Res. 2016;7(3):1192-205.

Mali MN, Hajare AA. Ion-activated in situ gel system for ophthalmic delivery of moxifloxacin hydrochloride. Lat Am J Pharm. 2010;29(6):876-82.

Chen X, Li X, Zhou Y, Wang X, Zhang Y, Fan Y. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation. J Biomater Appl. 2012;27(4):391-402. doi: 10.1177/0885328211406563, PMID 21750179.

Fukushima A, Tomita T. Image analyses of conjunctival hyperemia in guinea pig allergic conjunctivitis. Graefes Arch Clin Exp Ophthalmol. 2009;247(11):1571-2. doi: 10.1007/s00417-009-1123-5, PMID 19544064.

Published

07-03-2024

How to Cite

NAYAK, D., KONDEPATI, H. V., RATHNANAND, M., & TIPPAVAJHALA, V. K. (2024). STATISTICAL OPTIMIZATION AND EVALUATION OF IN SITU GEL FOR THE OCULAR DELIVERY OF CROMOLYN SODIUM. International Journal of Applied Pharmaceutics, 16(2), 124–131. https://doi.org/10.22159/ijap.2024v16i2.49781

Issue

Section

Original Article(s)