NEURAL NETWORK-BASED ADVERSE DRUG REACTION PREDICTION USING MOLECULAR SUBSTRUCTURE ANALYSES

Authors

  • SHIKSHA ALOK DUBEY Department of Computer Application, Veermata Jijabai Technological Institute (VJTI), Matunga, Mumbai-400019, India https://orcid.org/0000-0002-9320-6408
  • PRASHANT S. KHARKAR Department of Pharmaceutical Sciences, Institute of Chemical Technology, Matunga, Mumbai-400019, India
  • ANALA A. PANDIT Department of Computer Application, Veermata Jijabai Technological Institute (VJTI), Matunga, Mumbai-400019, India https://orcid.org/0000-0002-9320-6408

DOI:

https://doi.org/10.22159/ijap.2024v16i2.49936

Keywords:

ADR, Machine learning, Neural networks, Substructures, Fingerprints, AUC

Abstract

Objective: This study aims to enhance early detection and prediction by exploiting drug molecular substructures, overcoming challenges posed by limited authentic patient data in the medical domain.

Methods: The study implemented a neural network approach to optimize molecular fingerprint algorithms and employed various machine learning algorithms for predictions. Additionally, the study identified and extracted substructures associated with severe Adverse Drug Reactions (ADRs), validating their presence within drug structures through a comparison with a random set of drug structures. Predictions were made for specific molecular structures, and results were validated using clinical evidence from the literature.

Results: Optimized molecular fingerprint algorithms and diverse machine-learning models yielded promising outcomes. The Area Under Curve (AUC) value for the fingerprint dataset was obtained at approximately 65%, and integrating it with patient data significantly improved the performance by about 30%. Substructure analysis pinpointed key components linked to severe ADRs, reinforcing the predictive prowess of the model. Predictions for specific molecular structures were corroborated using clinical evidence from the literature, fortifying the credibility of the proposed approach.

Conclusion: In conclusion, this research effectively tackles challenges in the early detection and prediction of ADRs by leveraging machine learning algorithms, focusing on drug molecular substructures. The optimized model, incorporating both fingerprint and patient datasets, demonstrated significant improvements in predictive performance. Identifying and validating substructures linked to severe ADRs contribute to the model's reliability. The study's findings are vital for advancing drug safety and laying the groundwork for further strides in predictive modeling within the medical domain.

Downloads

Download data is not yet available.

References

Pushparajah DS, Geissler J, Eupati WN. Collaboration between patients, academia, and industry to champion the informed patient in the research and development of medicines. J Dev Sci. 2016 Nov 17;1(1):74. doi: 10.18063/jmds.v1i1.122.

The ICH Expert Working Group. Post-approval safety data management: definitions and standards for expedited reporting. ICH harmonised tripartite; 2003. Available from: http://www.fda.gov/cber/gdlns/ichexrep.htm. [Last accessed on 03 Feb 2024]

Alomar MJ. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm J. 2014;22(2):83-94. doi: 10.1016/j.jsps.2013.02.003, PMID 24648818.

Cyriac ST, Iype DS. Neuropsychiatric adverse effects of antibacterial agents. Int J Pharm Pharm Sci. 2021;13(12):1-8. doi: 10.22159/ijpps.2021v13i12.42482.

Kaur A, Singh J. A case report on well-known but has to be reported adverse effect of phenytoin-induced rash and assessment of its severity based on adverse drug reaction reporting scales. Asian J Pharm Clin Res. 2022;15(12):1-2. doi: 10.22159/ajpcr.2022.v15i12.46006.

Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: revisiting lipinski’s rule of five. Int J Pharm. 2018;549(1-2):133-49. doi: 10.1016/j.ijpharm.2018.07.046, PMID 30040971.

Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44(D1):D1075-9. doi: 10.1093/nar/gkv1075, PMID 26481350.

Pandit AA, Dubey SA. A comprehensive review on Adverse Drug Reactions (ADRs) Detection and Prediction Models. In: 13th International Conference on Computational Intelligence and Communication Networks (CICN). Vol. 2021. IEEE Publications; 2021 Sep. p. 123-7. doi: 10.1109/CICN51697.2021.9574639.

Peng L, Xiao K, Ottaviani S, Stebbing J, Wang YJ. A real-world disproportionality analysis of FDA adverse event reporting system (FAERS) events for baricitinib. Expert Opin Drug Saf. 2020 Nov;19(11):1505-11. doi: 10.1080/14740338.2020.1799975, PMID 32693646.

Chiappini S, Vickers-Smith R, Guirguis A, Corkery JM, Martinotti G, Harris DR. Pharmacovigilance signals of the opioid epidemic over 10 years: data mining methods in the analysis of pharmacovigilance datasets collecting adverse drug reactions (ADRs) Reported to EudraVigilance (EV) and the FDA Adverse Event Reporting System (FAERS). Pharmaceuticals (Basel). 2022 Jun;15(6):675. doi: 10.3390/ph15060675, PMID 35745593.

Wohlgemuth G, Haldiya PK, Willighagen E, Kind T, Fiehn O. The chemical translation service-a web-based tool to improve standardization of metabolomic reports. Bioinformatics. 2010 Oct 15;26(20):2647-8. doi: 10.1093/bioinformatics/btq476, PMID 20829444.

Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D. The ChEMBL database in 2017. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-54. doi: 10.1093/nar/gkw1074, PMID 27899562.

Gonzalez Diaz H, Vilar S, Santana L, Uriarte E. Medicinal chemistry and bioinformatics-current trends in drugs discovery with networks topological indices. Curr Top Med Chem. 2007;7(10):1015-29. doi: 10.2174/156802607780906771, PMID 17508935.

Xie XQS. Exploiting PubChem for virtual screening. Expert Opin Drug Discov. 2010 Dec;5(12):1205-20. doi: 10.1517/17460441.2010.524924, PMID 21691435.

Awale M, Reymond JL. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17. J Chem Inf Model. 2014 Jul 28;54(7):1892-907. doi: 10.1021/ci500232g, PMID 24988038.

Warr WA. Twenty-five years of progress in cheminformatics. In: American Chemical Society National Meeting; 2005. p. 229.

Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010 May 24;50(5):742-54. doi: 10.1021/ci100050t, PMID 20426451.

Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011 Jun 30;32(7):1466-74. doi: 10.1002/jcc.21707, PMID 21425294.

Fernandez-de Gortari E, Garcia Jacas CR, Martinez 0Mayorga K, Medina Franco JL. Database fingerprint (DFP): an approach to represent molecular databases. J Cheminform. 2017;9:9. doi: 10.1186/s13321-017-0195-1, PMID 28224019.

Glem RC, Bender A, Arnby CH, Carlsson L, Boyer S, Smith J. Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. I Drugs. 2006 Mar;9(3):199-204. PMID 16523386.

Withnall M, Lindelöf E, Engkvist O, Chen H. Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction. J Cheminform. 2020;12(1):1. doi: 10.1186/s13321-019-0407-y, PMID 33430988.

Meyer JG, Liu S, Miller IJ, Coon JJ, Gitter A. Learning drug functions from chemical structures with convolutional neural networks and random forests. J Chem Inf Model. 2019 Oct 28;59(10):4438-49. doi: 10.1021/acs.jcim.9b00236, PMID 31518132.

Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru Guzik A. Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf Process Syst. 2015;28.

Cao Y, Jiang T, Girke T. A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics. 2008 Jul 1;24(13):i366-74. doi: 10.1093/bioinformatics/btn186, PMID 18586736.

Shanmugapriya K. N-Unexpected temporal association rule for diagnosing adverse drug reaction from health database. Int Proc Comput Sci Inf Technol (IPCSIT). 2011;18.

Babu LP, Robin N, Babu JV, Jose J, George S. Adverse drug reactions among drug-resistant tuberculosis treatment: an observational cohort study. Int J Pharm Pharm Sci. 2021;13(9):50-5. doi: 10.22159/ijpps.2021v13i9.42460.

Kasliwal R. Spontaneous reporting in pharmacovigilance: strengths, weaknesses and recent methods of analysis. J Clin Prev Cardiol. 2012;1:20-3.

Liu M, Wu Y, Chen Y, Sun J, Zhao Z, Chen XW. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J Am Med Inform Assoc. 2012 Jan 1;19(e1):e28-35. doi: 10.1136/amiajnl-2011-000699, PMID 22718037.

Grangel Gonzalez I. A knowledge graph-based integration approach for industry 4.0: Universitats-und Landesbibliothek Bonn; 2019.

Dey S, Luo H, Fokoue A, Hu J, Zhang P. Predicting adverse drug reactions through interpretable deep learning framework. BMC Bioinformatics. 2018 Nov 29;19Suppl 21:476. doi: 10.1186/s12859-018-2544-0, PMID 30591036.

Yang Z, Zhong W, Lv Q, Yu-Chian Chen C. Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network. Chem Sci. 2022;13(29):8693-703. doi: 10.1039/d2sc02023h, PMID 35974769.

Cao Y, Jiang T, Girke T. A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics. 2008 Jul 1;24(13):i366-74. doi: 10.1093/bioinformatics/btn186, PMID 18586736.

Merlot C, Domine D, Cleva C, Church DJ. Chemical substructures in drug discovery. Drug Discov Today. 2003;8(13):594-602. doi: 10.1016/s1359-6446(03)02740-5, PMID 12850335.

Yang J, Zhang D, Liu L, Li G, Cai Y, Zhang Y. Computational drug repositioning based on the relationships between substructure–indication. Brief Bioinform. 2021 Jul 1;22(4):bbaa348. doi: 10.1093/bib/bbaa348, PMID 33313675.

Zhou B, Zhao X, Lu J, Sun Z, Liu M, Zhou Y. Relating substructures and side effects of drugs with chemical-chemical interactions. Comb Chem High Throughput Screen. 2020;23(4):285-94. doi: 10.2174/1386207322666190702102752, PMID 31267865.

Hentabli H, Bengherbia B, Saeed F, Salim N, Nafea I, Toubal A. Convolutional neural network model based on 2D fingerprint for bioactivity prediction. Int J Mol Sci. 2022 Nov;23(21):13230. doi: 10.3390/ijms232113230, PMID 36362018.

Issaragrisil S, Kaufman DW, Anderson T, Chansung K, Thamprasit T, Sirijirachai J. Low drug attributability of aplastic anemia in Thailand. The Aplastic Anemia Study Group. Blood. 1997 Jun 1;89(11):4034-9. PMID 9166842.

Jääskeläinen SK, Woda A. Burning mouth syndrome. Cephalalgia. 2017 Jun;37(7):627-47. doi: 10.1177/0333102417694883, PMID 28569120.

Bover Cid S, Latorre Moratalla ML, Veciana Nogues MT, Vidal Carou MD. Processing contaminants: biogenic amines encyclopedia of food safety; 2014. p. 381-91.

Published

07-03-2024

How to Cite

ALOK DUBEY, S., KHARKAR, P. S., & PANDIT, A. A. (2024). NEURAL NETWORK-BASED ADVERSE DRUG REACTION PREDICTION USING MOLECULAR SUBSTRUCTURE ANALYSES. International Journal of Applied Pharmaceutics, 16(2), 337–345. https://doi.org/10.22159/ijap.2024v16i2.49936

Issue

Section

Original Article(s)