DEVELOPMENT OPTIMIZATION OF SORAFENIB-LOADED PLGA NANOPARTICLES GUIDED BY IN SILICO COMPUTATIONAL TOOLS

Authors

  • GNYANA RANJAN PARIDA School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India https://orcid.org/0000-0001-5663-8474
  • GURUDUTTA PATTNAIK School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India https://orcid.org/0000-0002-3532-721X
  • AMULYARATNA BEHERA School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
  • SURAJ SAHOO Sri Jayadev College of Pharmaceutical Sciences, Bhubaneswar, Odisha, India
  • DIBYALOCHAN MOHANTY Department of Pharmaceutics, Anurag University, Hyderabad, India https://orcid.org/0000-0002-1895-8706

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50008

Keywords:

Sorafenib, In silico, PLGA, Polymeric nanoparticle

Abstract

Objective: The purpose of this study was to develop, characterize, and optimize sorafenib-loaded Poly (lactic-co-glycolic acid) PLGA polymeric nanoparticles for prolonged delivery of sorafenib for improved hepatic cancer treatment

Methods: The drug-excipient interaction was explored by molecular docking studies within silico tools. The drug-loaded polymeric nanoparticles were prepared by single emulsion solvent evaporation method using box-bhenkan design and characterized for particle size, zeta potential, and entrapment efficiency. Shape and surface morphology was analysed by Transmission Electron Microscopy (TEM). In vitro drug release study was performed by using a diffusion membrane.

Results: The docking analysis inferred that the drug has interacted well with PLGA and PF-68, which could prevent the drug crystal formation. The optimized polymeric nanoparticles had a particle size of 175 nm, Entrapment Efficiency (EE) of 85.1% and zeta potential of-23.8mV were found to be within 95% of CI of the predicted value, which is acceptable. TEM studies showed that the formed polymeric nanoparticles were smooth, spherical in shape and uniform in size. In vitro drug release study of optimized formulation showed extended release for sorafenib.

Conclusion: Based on the computational studies and in vitro release studies, the developed Sorafenib loaded in PLGA nanoparticles could be a promising formulation in oral drug delivery for the treatment of liver cancer.

Downloads

Download data is not yet available.

References

Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM. Computational models for clinical applications in personalized medicine guidelines and recommendations for data integration and model validation. J Pers Med. 2022 Jan 26;12(2):166. doi: 10.3390/jpm12020166, PMID 35207655.

Swain SS, Paidesetty SK, Dehury B, Das M, Vedithi SC, Padhy RN. Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Sci Rep. 2020;10(1):6839. doi: 10.1038/s41598-020-63913-9, PMID 32322091.

Poornima P PP, Priya S. Gastroretentive floating tablets enclosing nanosponge loaded with lafutidine for gastric ulcer: formulation and evaluation. Indian J Pharm Educ Res. 2021;55(1s):s100-11. doi: 10.5530/ijper.55.1s.41.

Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HA, Abdelgawad MA. Polymeric nanoparticles for delivery of natural bioactive agents: recent advances and challenges. Polymers. 2023 Feb 23;15(5):1123. doi: 10.3390/polym15051123, PMID 36904364.

Cao Y, Rewatkar P, Wang R, Hasnain SZ, Popat A, Kumeria T. Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends Pharmacol Sci. 2021 Nov 1;42(11):957-72. doi: 10.1016/j.tips.2021.08.005, PMID 34593258.

Sayiner M, Golabi P, Younossi ZM. Disease burden of hepatocellular carcinoma: a global perspective. Dig Dis Sci. 2019 Apr 15;64(4):910-7. doi: 10.1007/s10620-019-05537-2, PMID 30835028.

Rawla P, Sunkara T, Muralidharan P, Raj JP. Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn). 2018 Sep 30;22(3):141-50. doi: 10.5114/wo.2018.78941, PMID 30455585.

Baglieri J, Brenner DA, Kisseleva T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int J Mol Sci. 2019 Apr 7;20(7):1723. doi: 10.3390/ijms20071723, PMID 30959975.

Chourasiya NK, Fatima F, Mishra M, Kori S, Das R, Kashaw V. Structural insights into N-heterocyclic moieties as an anticancer agent against hepatocellular carcinoma: an exhaustive perspective. Mini Rev Med Chem. 2023 Oct;23(19):1871-92. doi: 10.2174/1389557523666230508160924, PMID 37157201.

Omidkhoda N, Zare S, Mahdiani S, Samadi S, Akhlaghi F, Mohammadpour AH. Hepatic transporters alternations associated with non-alcoholic fatty liver disease (NAFLD): a systematic review. Eur J Drug Metab Pharmacokinet. 2023 Oct 13;48(1):1-10. doi: 10.1007/s13318-022-00802-8, PMID 36319903.

Veiga Matos J, Morales AI, Prieto M, Remiao F, Silva R. Study models of drug-drug interactions involving p-glycoprotein: the potential benefit of p-glycoprotein modulation at the kidney and intestinal levels. Molecules. 2023 Nov 10;28(22):7532. doi: 10.3390/molecules28227532, PMID 38005253.

Madhusudhan S, Gupta NV, Rahamathulla M, Chidambaram SB, Osmani RA, Ghazwani M. Subconjunctival delivery of sorafenib-tosylate-loaded cubosomes for facilitated diabetic retinopathy treatment: formulation development, evaluation, pharmacokinetic and pharmacodynamic (PKPD) studies. Pharmaceutics. 2023;15(10):2419. doi: 10.3390/pharmaceutics15102419, PMID 37896180.

Khanuja HK, Awasthi R, Dureja H. Sorafenib tosylate-loaded nanosuspension: preparation, optimization, and in vitro cytotoxicity study against human HepG2 carcinoma cells. J Chemother. 2023 Oct 20:1-20. doi: 10.1080/1120009X.2023.2273095, PMID 37881008.

Lim C, Lee D, Kim M, Lee S, Shin Y, Ramsey JD. Development of a sorafenib-loaded solid self-nanoemulsifying drug delivery system: formulation optimization and characterization of enhanced properties. J Drug Deliv Sci Technol. 2023;82. doi: 10.1016/j.jddst.2023.104374, PMID 37124157.

Dahiya M, Awasthi R, Yadav JP, Sharma S, Dua K, Dureja H. Chitosan based sorafenib tosylate loaded magnetic nanoparticles: formulation and in vitro characterization. Int J Biol Macromol. 2023 Jul 1;242(2):124919. doi: 10.1016/j.ijbiomac.2023.124919, PMID 37196717.

Alemomen M, Taymouri S, Saberi S, Varshosaz J. Preparation, optimization, and in vitro–in vivo evaluation of sorafenib-loaded polycaprolactone and cellulose acetate nanofibers for the treatment of cutaneous leishmaniasis. Drug Deliv Transl Res. 2023 Mar;13(3):862-82. doi: 10.1007/s13346-022-01250-2, PMID 36223030.

Liu F, Meng L, Wang H, Du C, Zhu J, Xiong Q. Research on preparation and antitumor activity of redox-responsive polymer micelles co-loaded with sorafenib and curcumin. J Biomater Sci Polym Ed. 2023 Nov 2;34(16):2179-97. doi: 10.1080/09205063.2023.2230845, PMID 37369107.

Caputo TM, Cusano AM, Principe S, Cicatiello P, Celetti G, Aliberti A. Sorafenib-loaded PLGA carriers for enhanced drug delivery and cellular uptake in liver cancer cells. Int J Nanomedicine. 2023 Dec 31;18:4121-42. doi: 10.2147/IJN.S415968, PMID 37525693.

Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021 Jan 1;28(1):1397-418. doi: 10.1080/10717544.2021.1938756, PMID 34184949.

Huang Y. Targeting glycolysis for cancer therapy using drug delivery systems. J Control Release. 2023 Jan 1;353:650-62. doi: 10.1016/j.jconrel.2022.12.003. PMID 36493949.

Azad I, Ahmad R, Khan T, Saquib M, Hassan F, Akhter Y. Phenanthridine derivatives as promising new anticancer agents: synthesis, biological evaluation and binding studies. Future Med Chem. 2020 Feb;12(8):709-39. doi: 10.4155/fmc-2019-0016, PMID 32208986.

Sahoo A, Fuloria S, Swain SS, Panda SK, Sekar M, Subramaniyan V. Potential of marine terpenoids against SARS-CoV-2: an in silico drug development approach. Biomedicines. 2021 Oct 20;9(11):1505. doi: 10.3390/biomedicines9111505, PMID 34829734.

Nava Arzaluz MG, Pinon Segundo E, Ganem Rondero A, Lechuga Ballesteros D. Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Pat Drug Deliv Formul. 2012 Dec 1;6(3):209-23. doi: 10.2174/187221112802652633, PMID 22734869.

Mohanty D, Gilani SJ, Zafar A, Imam SS, Kumar LA, Ahmed MM. Formulation and optimization of alogliptin-loaded polymeric nanoparticles: in vitro to in vivo assessment. Molecules. 2022 Jul 13;27(14):4470. doi: 10.3390/molecules27144470, PMID 35889343.

Rani A, Verma R, Mittal V, Bhatt S, Kumar M, Tiwari A. Formulation development and optimization of rosuvastatin loaded nanosuspension for enhancing dissolution rate. Curr Drug Ther. 2023 Feb 1;18(1):75-87. doi: 10.2174/1574885517666220822104652.

Serrano Lotina A, Portela R, Baeza P, Alcolea Rodriguez V, Villarroel M, Avila P. Zeta potential as a tool for functional materials development. Cat Today. 2023 Nov 1;423:113862. doi: 10.1016/j.cattod.2022.08.004.

Jan N, Madni A, Shah H, Khan S, Ijaz QA, Badshah SF. Development and statistical optimization of a polymer-based nanoparticulate delivery system for enhancing cytarabine efficacy in leukemia treatment. J Pharm Innov. 2023 Jul 6;18(4):1713-26. doi: 10.1007/s12247-023-09753-2.

Dahiya M, Awasthi R, Dua K, Dureja H. Sorafenib tosylate loaded superparamagnetic nanoparticles: development, optimization and cytotoxicity analysis on HepG2 human hepatocellular carcinoma cell line. J Drug Deliv Sci Technol. 2023 Jan 1;79:104044. doi: 10.1016/j.jddst.2022.104044.

Alharthi SS, Badawi A. Effect of Ag/ CuS nanoparticles loading to enhance linear/nonlinear spectroscopic and electrical characteristics of PVP / PVA blends for flexible optoelectronics. Vinyl Additive Technology. 2024;30(1):230-43. doi: 10.1002/vnl.22044.

Elsewedy HS, Dhubiab BE, Mahdy MA, Elnahas HM. Development, optimization, and evaluation of pegylated brucine-loaded PLGA nanoparticles. Drug Deliv. 2020 Jan 1;27(1):1134-46. doi: 10.1080/10717544.2020.1797237, PMID 32729331.

Dashputre NL, laddha UD, Darekar PP, Kadam JD, Patil SB, Sable RR. Potential therapeutic effects of naringin loaded PLGA nanoparticles for the management of Alzheimer’s disease: in vitro, ex vivo and in vivo investigation. Heliyon. 2023 Sep 1;9(9):e19374. doi: 10.1016/j.heliyon.2023.e19374, PMID 37662728.

Alik Kumar L, Pattnaik G, Satapathy BS, Mohanty D, Prasanth PA, Dey S. Preparation and optimization of gemcitabine loaded PLGA nanoparticle using box-Behnken design for targeting to brain: in vitro characterization, cytotoxicity and apoptosis study. Curr Nanomater. 2024 Dec 1;9(4):324-38. doi: 10.2174/0124054615274558231011164603.

Shobha U, Aditi B, Vaishali K. Effect of various stabilizers on the stability of lansoprazole nanosuspension prepared using high shear homogenization: preliminary investigation. J Appl Pharm Sci. 2021 Jun 12;11(9):085-92. doi: 10.7324/JAPS.2021.110910.

Chandwani S, Saini TR, Soni R, Paswan SK, Soni PK. Box-Behnken design optimization of salicylic acid loaded liposomal gel formulation for treatment of foot corn. Int J App Pharm. 2023;15(3):220-33. doi: 10.22159/ijap.2023v15i3.47455.

Published

07-07-2024

How to Cite

PARIDA, G. R., PATTNAIK, G., BEHERA, A., SAHOO, S., & MOHANTY, D. (2024). DEVELOPMENT OPTIMIZATION OF SORAFENIB-LOADED PLGA NANOPARTICLES GUIDED BY IN SILICO COMPUTATIONAL TOOLS. International Journal of Applied Pharmaceutics, 16(4), 135–141. https://doi.org/10.22159/ijap.2024v16i4.50008

Issue

Section

Original Article(s)