STUDY ON FORMULATION OF BACTERIAL CELLULOSE NANOFIBERS-COATED NANOLIPOSOMES CONTAINING PACLITAXEL FOR ORAL ADMINISTRATION

Authors

  • CUONG BA CAO Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Xuan Hoa Ward, Phuc Yen City, Vinh Phuc Province-280000, Viet Nam https://orcid.org/0000-0002-0754-6001
  • PHONG XUAN ONG Institute of Scientific Research and Applications, Hanoi Pedagogical University 2, Xuan Hoa Ward, Phuc Yen City, Vinh Phuc Province-280000, Viet Nam https://orcid.org/0000-0002-7180-1644
  • THANH XUAN NGUYEN Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Xuan Hoa Ward, Phuc Yen City, Vinh Phuc Province-280000, Viet Nam https://orcid.org/0000-0003-1719-5855

DOI:

https://doi.org/10.22159/ijap.2024v16i2.50056

Keywords:

Bacterial cellulose nanofibers-coated nanoliposomes, Paclitaxel, Oral administration

Abstract

Objective: The low oral bioavailability of paclitaxel (PAC) because of its limited aqueous solubility and poor intestinal permeability after being administered orally suggests the need for a sustained release system. The aim of this study is to produce and evaluate in vitro a nanoliposome system that carries paclitaxel (BCN-LIP-PAC) for oral administration.

Methods: Thin-film evaporation and electrostatic deposition methods were used to obtain LIP-PAC and BCN-LIP-PAC. Particle size, polydispersity index (PDI), zeta potential, morphological analysis, entrapment efficiency percentage (EE%), and in vitro dissolution studies were used to characterize the developed systems.

Results: The nano-range sizes of LIP-PAC and BCN-LIP-PAC (0.1 % BCN) were 112±4.2 nm and 154±6.4 nm, respectively, where EE % were 80.6±2.3 % and 84.6±1.7 %, respectively. BCN-LIP-PAC exhibited good stability in simulated gastrointestinal fluids. The drug release experiments conducted in vitro showed that BCN-LIP-PAC had obvious sustained release behaviors when compared to LIP-PAC. Furthermore, the release rate of PAC from all LIP-PAC and BCN-LIP-PAC was higher in SIF than in SGF.

Conclusion: The preparation, characterization, and evaluation of BCN-LIP-PAC (0.1 % BCN) for oral PAC delivery were all successful. In conclusion, the approach presented herein is a promising option for delivering oral sustained-release PAC.

Downloads

Download data is not yet available.

References

Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15-40. doi: 10.1016/j.jconrel.2013.04.020, PMID 23648832.

Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev. 2013;65(6):880-90. doi: 10.1016/j.addr.2012.11.005, PMID 23220325.

Bhosale RR, Janugade BU, Chavan DD, Thorat VM. Current perspectives on applications of nanoparticles for cancer management. Int J Pharm Pharm Sci. 2023;15(11):1-10. doi: 10.22159/ijpps.2023v15i11.49319.

Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G. Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B. 2013;1(23):2976-84. doi: 10.1039/c3tb20149j, PMID 32260865.

Tatode AA, Patil AT, Umekar MJ, Telange DR. Investigation of effect of phospholipids on physical and functional characterization of paclitaxel liposomes. Int J Pharm Pharm Sci. 2017;9(12):141-6. doi: 10.22159/ijpps.2017v9i12.20749.

Lee E, Lee J, Lee IH, Yu M, Kim H, Chae SY. Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem. 2008;51(20):6442-9. doi: 10.1021/jm800767c, PMID 18826299.

Pandita D, Ahuja A, Lather V, Benjamin B, Dutta T, Velpandian T. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. AAPS PharmSciTech. 2011;12(2):712-22. doi: 10.1208/s12249-011-9636-8, PMID 21637945.

Zhao L, Feng SS. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci. 2010;99(8):3552-60. doi: 10.1002/jps.22113, PMID 20564384.

Sharma S, Verma A, Pandey G, Mittapelly N, Mishra PR. Investigating the role of pluronic-g-cationic polyelectrolyte as functional stabilizer for nanocrystals: impact on paclitaxel oral bioavailability and tumor growth. Acta Biomater. 2015;26:169-83. doi: 10.1016/j.actbio.2015.08.005, PMID 26265061.

Li Y, Chen Z, Cui Y, Zhai G, Li L. The construction and characterization of hybrid paclitaxel-in-micelle-in-liposome systems for enhanced oral drug delivery. Colloids Surf B Biointerfaces. 2017;160:572-80. doi: 10.1016/j.colsurfb.2017.10.016, PMID 29028605.

Tatode AA, Patil AT, Umekar MJ. Application of response surface methodology in optimization of paclitaxel liposomes prepared by thin film hydration technique. Int J App Pharm. 2018;10(2):62-9. doi: 10.22159/ijap.2018v10i2.24238, doi: 10.22159/ijap.2018v10i2.24238.

Jang Y, Ko MK, Park YE, Hong JW, Lee IH, Chung HJ. Effect of paclitaxel content in the DHP107 oral formulation on oral bioavailability and antitumor activity. J Drug Deliv Sci Technol. 2018;48:183-92. doi: 10.1016/j.jddst.2018.09.014.

Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm. 2018;542(1-2):242-52. doi: 10.1016/j.ijpharm.2018.03.030, PMID 29555439.

Bose P, Kumar De P, Samajdar G, Das D. A strategic process development and in vitro cytotoxicity analysis of paclitaxel-loaded liposomes. Int J App Pharm. 2023;15:219-27. doi: 10.22159/ijap.2023v15i2.47305, doi: 10.22159/ijap.2023v15i2.47305.

Nguyen TX, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond). 2016;11(9):1169-85. doi: 10.2217/nnm.16.9, PMID 27074098.

Estanqueiro M, Amaral MH, Conceicao J, Lobo JMS. Evolution of liposomal carriers intended to anticancer drug delivery: an overview. Int J Curr Pharm Res. 2015;7(4):26-33.

Rodriques P, Thacker K, Bhupendra GP. Exploring lipid-based drug delivery in cancer therapy via liposomal formulations. Asian J Pharm Clin Res 2022;15(5):15-22. doi: 10.22159/ajpcr.2022.v15i5.43668.

Li Z, Zhang M, Liu C, Zhou S, Zhang W, Wang T. Development of liposome containing sodium deoxycholate to enhance oral bioavailability of itraconazole. Asian J Pharm Sci. 2017;12(2):157-64. doi: 10.1016/j.ajps.2016.05.006, PMID 32104325.

Bohsen MS, Tychsen ST, Kadhim AAH, Grohganz H, Treusch AH, Brandl M. Interaction of liposomes with bile salts investigated by asymmetric flow field-flow fractionation (AF4): a novel approach for stability assessment of oral drug carriers. Eur J Pharm Sci. 2023;182:106384. doi: 10.1016/j.ejps.2023.106384, PMID 36642346.

Shin GH, Chung SK, Kim JT, Joung HJ, Park HJ. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. J Agric Food Chem. 2013;61(46):11119-26. doi: 10.1021/jf4035404, PMID 24175657.

Nguyen TX, Huang L, Liu L, Elamin Abdalla AM, Gauthier M, Yang G. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J Mater Chem B. 2014;2(41):7149-59. doi: 10.1039/c4tb00876f, PMID 32261793.

Liu Y, Liu D, Zhu L, Gan Q, Le X. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res Int. 2015;74:97-105. doi: 10.1016/j.foodres.2015.04.024, PMID 28412008.

Cuomo F, Cofelice M, Venditti F, Ceglie A, Miguel M, Lindman B. In vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids Surf B Biointerfaces. 2018;168:29-34. doi: 10.1016/j.colsurfb.2017.11.047, PMID 29183647.

Tai K, Rappolt M, Mao L, Gao Y, Li X, Yuan F. The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan. Food Hydrocoll. 2020;99:105355. doi: 10.1016/j.foodhyd.2019.105355.

Moslehi M, Mortazavi SAR, Azadi A, Fateh S, Hamidi M, Foroutan SM. Preparation, optimization and characterization of chitosan-coated liposomes for solubility enhancement of furosemide: a model BCS IV drug. Iran J Pharm Res. 2020;19(1):366-82. doi: 10.22037/ijpr.2019.111834.13384, PMID 32922494.

Zhou W, Cheng C, Ma L, Zou L, Liu W, Li R. The formation of chitosan-coated rhamnolipid liposomes containing curcumin: stability and in vitro digestion. Molecules. 2021;26(3):560. doi: 10.3390/molecules26030560, PMID 33494543.

Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 2012;33(28):6758-68. doi: 10.1016/j.biomaterials.2012.05.026, PMID 22748771.

Chen MX, Li BK, Yin DK, Liang J, Li SS, Peng DY. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohydr Polym. 2014;111:298-304. doi: 10.1016/j.carbpol.2014.04.038, PMID 25037355.

Yazdi JR, Tafaghodi M, Sadri K, Mashreghi M, Nikpoor AR, Nikoofal Sahlabadi S. Folate targeted pegylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;194:111203. doi: 10.1016/j.colsurfb.2020.111203, PMID 32585538.

Yamazoe E, Fang JY, Tahara K. Oral mucus-penetrating pegylated liposomes to improve drug absorption: differences in the interaction mechanisms of a mucoadhesive liposome. Int J Pharm. 2021;593:120148. doi: 10.1016/j.ijpharm.2020.120148, PMID 33290871.

Wu H, Nan J, Yang L, Park HJ, Li J. Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J Control Release. 2023;353:51-62. doi: 10.1016/j.jconrel.2022.11.032, PMID 36410613.

He Y, Huang Y, Xu H, Yang X, Liu N, Xu Y. Aptamer-modified M cell targeting liposomes for oral delivery of macromolecules. Colloids Surf B Biointerfaces. 2023;222:113109. doi: 10.1016/j.colsurfb.2022.113109, PMID 36599185.

Islam MU, Ullah MW, Khan S, Shah N, Park JK. Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol. 2017;102:1166-73. doi: 10.1016/j.ijbiomac.2017.04.110, PMID 28487196.

Singhsa P, Narain R, Manuspiya H. Bacterial cellulose nanocrystals (BCNC) preparation and characterization from three bacterial cellulose sources and development of functionalized BCNCs as nucleic acid delivery systems. ACS Appl Nano Mater. 2018;1(1):209-21. doi: 10.1021/acsanm.7b00105.

Badshah M, Ullah H, Khan SA, Park JK, Khan T. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose. 2017;24(11):5041-52. doi: 10.1007/s10570-017-1474-8.

Nguyen TX, Pham MV, Cao CB. Development and evaluation of oral sustained-release ranitidine delivery system based on bacterial nanocellulose material produced by Komagataeibacter xylinus. Int J App Pharm. 2020;12(3):48-55. doi: 10.22159/ijap.2020v12i3.37218.

Litzinger DC, Buiting AM, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta. 1994;1190(1):99-107. doi: 10.1016/0005-2736(94)90038-8, PMID 8110825.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263-71. doi: 10.1208/s12248-010-9185-1, PMID 20373062.

Published

07-03-2024

How to Cite

CAO, C. B., XUAN ONG, P., & NGUYEN, T. X. (2024). STUDY ON FORMULATION OF BACTERIAL CELLULOSE NANOFIBERS-COATED NANOLIPOSOMES CONTAINING PACLITAXEL FOR ORAL ADMINISTRATION. International Journal of Applied Pharmaceutics, 16(2), 202–208. https://doi.org/10.22159/ijap.2024v16i2.50056

Issue

Section

Original Article(s)