BIOSURFACTANTS: SUSTAINABLE ALTERNATIVE TO SYNTHETIC SURFACTANTS AND THEIR APPLICATIONS

Authors

  • PRAVEENA POOMALAI Department of Pharmaceutics-Centre for Nano Engineering Science and Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, The Nilgiris-643001, Tamil Nadu, India https://orcid.org/0009-0002-9999-9901
  • JANESHA KRISHNAN Department of Pharmaceutics-Centre for Nano Engineering Science and Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, The Nilgiris-643001, Tamil Nadu, India https://orcid.org/0009-0005-5386-443X
  • ASHWIN RAVICHANDRAN Department of Pharmaceutics-Centre for Nano Engineering Science and Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, The Nilgiris-643001, Tamil Nadu, India
  • RAMAN SURESHKUMAR Department of Pharmaceutics-Centre for Nano Engineering Science and Technology (C-NEST), JSS Academy of Higher Education and Research, JSS College of Pharmacy, Ooty, The Nilgiris-643001, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2024v16i2.50061

Keywords:

Biosurfactant, Emulsification, Nanoparticles, Lipid drug delivery

Abstract

Biosurfactants are surface active agents produced by microorganisms, which help reduce surface or interfacial tension between two immiscible liquids like oil and water. In recent years, Due to their environmentally friendly nature and wide range of applications in various industries, they can act as a sustainable alternative to synthetic surfactants. This review article provides an overview of biosurfactants, emphasizing their need for biosurfactants, the production process, and their classification based on molecular weight, charge, and the microorganism they derived. The advantages include biodegradability, biocompatibility, low toxicity, surface activity, and specificity, and various areas where the biosurfactant used are emulsification, thermal stability, pH stability, wetting ability, foaming ability, and spreadability. Research on using biosurfactants in various formulations like nanoparticles, liposomes, transdermal application, nanoemulsion, and nanocapsules is also highlighted in this review to support its application in the medical field. Biosurfactants are also utilized in various fields like the pharmaceuticals, cosmetics, food, and oil industries. However, they have their drawbacks, which include high production costs, variability in production yield, sensitivity to the environment, lack of standardization, hurdles in regulatory approval, and research and development limitations. Despite certain drawbacks, biosurfactant offers a sustainable alternative to synthetic surfactants.

Downloads

Download data is not yet available.

References

Rosen MJ. Surfactants and interfacial phenomena. 3rd ed. New York: John Wiley & Sons. Inc; 2004.

Pandey A. Role of surfactants as penetration enhancer in transdermal drug delivery system. J Mol Pharm Org Process Res. 2014 May 15;02(2). doi: 10.4172/2329-9053.1000113.

Shaban SM, Kang J, Kim DH. Surfactants: recent advances and their applications. Compos Commun. 2020;22. doi: 10.1016/j.coco.2020.100537.

Choi EC, Choi WS, Hong B. The variation of surface contact angles according to the diameter of carbon nanotubes. J Nanosci Nanotechnol. 2009;9(6):3805-9. doi: 10.1166/jnn.2009.ns71, PMID 19504923.

Qiu Y, Chen Y, Zhang GG, Yu L, Mantri RV. Developing solid oral dosage forms: pharmaceutical theory and practice. Academic press; 2016.

Vold RD. Emulsions: Theory and Practice. Paul: Becher. ACS Publications; 1965 Available from: https://pubs.acs.org/doi/pdf/10.1021/ed042p692.2. [Last accessed on 11 Oct 2023]

Logan JW, Moya FR. Animal-derived surfactants for the treatment and prevention of neonatal respiratory distress syndrome: summary of clinical trials. Ther Clin Risk Manag. 2009;5(1):251-60. doi: 10.2147/tcrm.s4029, PMID 19436610.

Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590-8. doi: 10.1016/s0959-8049(01)00171-x, PMID 11527683.

Sinko PJ. Martin’s physical pharmacy and pharmaceutical sciences. Lippincott Williams & Wilkins; 2023.

Wang C, Li X, Wettig SD, Badea I, Foldvari M, Verrall RE. Investigation of complexes formed by interaction of cationic gemini surfactants with deoxyribonucleic acid. Phys Chem Chem Phys. 2007;9(13):1616-28. doi: 10.1039/b618579g, PMID 17429555.

Kaur P, Garg T, Rath G, Murthy RSR, Goyal AK. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv. 2016;23(3):727-38. doi: 10.3109/10717544.2014.935530, PMID 25013959.

Kumar N, Tyagi R. Dimeric surfactants: promising ingredients of cosmetics and toiletries. Cosmetics. 2013;1(1):3-13. doi: 10.3390/cosmetics1010003.

Holmberg K. Novel surfactants: preparation applications and biodegradability, revised and expanded. Crc Press. 2003;114. doi: 10.1201/9780203911730.

Islam MA, Sarker S, Nasrin MS, Hoque MA, Islam MS, Islam MN. Vermicompost for mitigation of surfactant contamination in surface water. J Sci Res. 2020 May 1;12(3):411-7. doi: 10.3329/jsr.v12i3.45220.

Lewis MA. Are laboratory-derived toxicity data for freshwater algae worth the effort? Enviro Toxic and Chemistry. 1990;9(10):1279-84. doi: 10.1002/etc.5620091006.

Bazel YaR, Antal IP, Lavra VM, Kormosh ZhA. Methods for the determination of anionic surfactants. J Anal Chem. 2014 Mar 1;69(3):211-36. doi: 10.1134/S1061934814010043.

Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination. 2008;223(1-3):143-51. doi: 10.1016/j.desal.2007.01.198.

Bhattacharyya S, Ghosh M, Bhattacharyya DK. Pseudomonas strains as source of microbial surface-active molecules. J Oleo Sci. 2003;52(4):221-4. doi: 10.5650/JOS.52.221.

Joshi S, Bharucha C, Desai AJ. Production of biosurfactant and antifungal compound by fermented food isolate bacillus subtilis 20B. Bioresour Technol. 2008;99(11):4603-8. doi: 10.1016/j.biortech.2007.07.030, PMID 17855083.

Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87(2):427-44. doi: 10.1007/s00253-010-2589-0, PMID 20424836.

Müller MM, Kugler JH, Henkel M, Gerlitzki M, Hormann B, Pohnlein M. Rhamnolipids–next generation surfactants? J Biotechnol. 2012;162(4):366-80. doi: 10.1016/j.jbiotec.2012.05.022, PMID 22728388.

Kłosowska Chomiczewska IE, Mędrzycka K, Hallmann E, Karpenko E, Pokynbroda T, Macierzanka A. Rhamnolipid CMC prediction. J Colloid Interface Sci. 2017;488:10-9. doi: 10.1016/j.jcis.2016.10.055, PMID 27816634.

Rodrigues LR, Banat IM, Van der Mei HC, Teixeira JA, Oliveira R. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol. 2006;100(3):470-80. doi: 10.1111/j.1365-2672.2005.02826.x, PMID 16478486.

Spencer JFT, Spencer DM, Tulloch AP. Extracellular glycolipids of yeasts. Econ Microbiol. 1979;3:523-40. doi: 10.1139/V64-123.

Boothroyd B, Thorn JA, Haskins RH. Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. Can J Biochem Physiol. 1956;34(1):10-4. doi: 10.1139/o56-003, PMID 13276861.

Gobbert U, Lang S, Wagner F. Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol Lett. 1984;6(4):225-30. doi: 10.1007/BF00140041.

Myla J, Chandrasekaran R, Muthu RS. Screening optimization and production of biosurfactant from bacillus and pseudomonas sp. Biomed Pharmacol J. 2010;3(1). Available from: http://biomedpharmajournal.org/?p=1283.

Solaiman DKY, Ashby R, Birbir M, Caglayan P. Antibacterial activity of sophorolipids produced by candida bombicola on gram-positive and gram-negative bacteria isolated from salted hides. JALCA. 2020;111:358-64.

Cooper DG, Goldenberg BG. Surface-active agents from two Bacillus species. Appl Environ Microbiol. 1987;53(2):224-9. doi: 10.1128/aem.53.2.224-229.1987, PMID 16347271.

White DA, Hird LC, Ali ST. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol. 2013;115(3):744-55. doi: 10.1111/jam.12287, PMID 23789786.

Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H. Formation and analysis of mannosyl erythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol. 2005 Feb;66(5):551-9. doi: 10.1007/s00253-004-1672-9, PMID 15248042.

Fan L, Li H, Niu Y, Chen Q. Characterization and inducing melanoma cell apoptosis activity of mannosyl erythritol lipids-a produced from Pseudozyma aphidis. Plos One. 2016;11(2):e0148198. doi: 10.1371/journal.pone.0148198, PMID 26828792.

Kitamoto D, Isoda H, Nakahara T. Functions and potential applications of glycolipid biosurfactants energy-saving materials to gene delivery carriers. Journal of Bioscience and Bioengineering. 2002;94(3):187-201. doi: 10.1016/S1389-1723(02)80149-9.

Laycock MV, Hildebrand PD, Thibault P, Walter JA, Wright JLC. Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of pseudomonas fluorescens. J Agric Food Chem. 1991;39(3):483-9. doi: 10.1021/jf00003a011.

Saini HS, Barragan Huerta BE, Lebron Paler A, Pemberton JE, Vazquez RR, Burns AM. Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis Strain M9-3 and its physicochemical and biological properties. J Nat Prod. 2008;71(6):1011-5. doi: 10.1021/np800069u, PMID 18471020.

Geissler M, Heravi KM, Henkel M, Hausmann R. Lipopeptide biosurfactants from Bacillus species. In: Elsevier; 2019. p. 205-40. doi: 10.1016/B978-0-12-812705-6.00006-X.

Thimon L, Peypoux F, Maget Dana R, Roux B, Michel G. Interactions of bioactive lipopeptides, iturin a and surfactin from bacillus subtilis. Biotechnol Appl Biochem. 1992;16(2):144-51. doi: 10.1111/j.1470-8744.1992.tb00218.x, PMID 1457050.

Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptide-lipid surfactant produced by bacillussubtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun. 1968;31(3):488-94. doi: 10.1016/0006-291X(68)90503-2.

Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci. 2020;275:102061. doi: 10.1016/j.cis.2019.102061, PMID 31767119.

Seydlova G, Svobodova J. Review of surfactin chemical properties and the potential biomedical applications. Open Med. 2008;3(2):123-33. doi: 10.2478/s11536-008-0002-5.

Jenny K, Koppeli O, Fiechter A. Biosurfactants from bacillus licheniformis: structural analysis and characterization. Appl Microbiol Biotechnol. 1991;36(1):5-13. doi: 10.1007/BF00164690.

Grangemard I, Wallach J, Maget Dana R, Peypoux F. Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol. 2001;90(3):199-210. doi: 10.1385/abab:90:3:199, PMID 11318033.

Rosenberg E, Ron EZ. Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol. 1997;8(3):313-6. doi: 10.1016/s0958-1669(97)80009-2, PMID 9206012.

Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL. Emulsifier of arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol. 1979;37(3):402-8. doi: 10.1128/aem.37.3.402-408.1979, PMID 36840.

Zosim Z, Gutnick D, Rosenberg E. Properties of hydrocarbon-in-water emulsions stabilized by acinetobacter RAG-1 emulsan. Biotechnol Bioeng. 1982;24(2):281-92. doi: 10.1002/bit.260240203, PMID 18546302.

Christofi N, Ivshina IB. Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol. 2002;93(6):915-29. doi: 10.1046/j.1365-2672.2002.01774.x, PMID 12452947.

Wittgens A, Rosenau F. On the road towards tailor-made rhamnolipids: current state and perspectives. Appl Microbiol Biotechnol. 2018;102(19):8175-85. doi: 10.1007/s00253-018-9240-x, PMID 30032436.

Cirigliano MC, Carman GM. Purification and characterization of Liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol. 1985;50(4):846-50. doi: 10.1128/aem.50.4.846-850.1985, PMID 16346917.

Cirigliano MC, Carman GM. Isolation of a bioemulsifier from candida lipolytica. Appl Environ Microbiol. 1984;48(4):747-50. doi: 10.1128/aem.48.4.747-750.1984, PMID 6439118.

Singh M, Desai JD. Hydrocarbon emulsification by Candida tropicalis and Debaryomyces polymorphus. Indian J Exp Biol. 1989 Mar;27(3):224-6. PMID 2606530.

Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerfaces. 2009;69(2):183-93. doi: 10.1016/j.colsurfb.2008.11.018, PMID 19131218.

Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci. 2016;17(3):401. doi: 10.3390/ijms17030401, PMID 26999123.

Dardouri M, Bettencourt A, Martin V, Carvalho FA, Colaço B, Gama A. Assuring the biofunctionalization of silicone covalently bonded to rhamnolipids: antibiofilm activity and biocompatibility. Pharmaceutics. 2022;14(9):1836. doi: 10.3390/pharmaceutics14091836, PMID 36145584.

Sangeetha J, Thomas S, Arutchelvi J, Doble M, Philip J. Functionalization of iron oxide nanoparticles with biosurfactants and biocompatibility studies. J Biomed Nanotechnol. 2013;9(5):751-64. doi: 10.1166/jbn.2013.1590, PMID 23802405.

Rodrigues LR, Teixeira JA. Biomedical and therapeutic applications of biosurfactants. Biosurfactants; 2010. p. 75-87. doi: 10.1007/978-1-4419-5979-9_6.

Rios F, Lechuga M, Fernandez Serrano M, Fernandez Arteaga A. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: effect of molecular structure, initial surfactant concentration and pH. Chemosphere. 2017;171:324-31. doi: 10.1016/j.chemosphere.2016.12.070, PMID 28027477.

Mohan PK, Nakhla G, Yanful EK. Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res. 2006;40(3):533-40. doi: 10.1016/j.watres.2005.11.030, PMID 16405945.

Kanga SA, Bonner JS, Page CA, Mills MA, Autenrieth RL. Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environ Sci Technol. 1997;31(2):556-61. doi: 10.1021/ES9604370.

Poremba K, Gunkel W, Lang S, Wagner F. Marine biosurfactants, III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z Naturforsch C J Biosci. 1991;46(3-4):210-6. doi: 10.1515/znc-1991-3-409, PMID 1878108.

Edwards KR, Lepo JE, Lewis MA. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull. 2003;46(10):1309-16. doi: 10.1016/S0025-326X(03)00238-8, PMID 14550343.

Md F. Biosurfactant: Production and Application. J Pet Environ Biotechnol 2012;3(4). doi: 10.4172/2157-7463.1000124.

Cooper DG, Macdonald CR, Duff SJB, Kosaric N. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol. 1981;42(3):408-12. doi: 10.1128/aem.42.3.408-412.1981, PMID 16345840.

Raza ZA, Khan MS, Khalid ZM. Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42(1):73-80. doi: 10.1080/10934520601015784, PMID 17129951.

De S, Malik S, Ghosh A, Saha R, Saha B. A review on natural surfactants. RSC Adv. 2015;5(81):65757-67, doi: 10.1039/C5RA11101C.

Reetz MT. Directed evolution of selective enzymes: catalysts for organic chemistry and biotechnology. John Wiley & Sons; 2016. doi: 10.1002/9783527655465.

Wittgens A, Santiago Schuebel B, Henkel M, Tiso T, Blank LM, Hausmann R. Heterologous production of long-chain rhamnolipids from burkholderia glumae in pseudomonas putida-a step forward to tailor-made rhamnolipids. Appl Microbiol Biotechnol. 2018;102(3):1229-39. doi: 10.1007/s00253-017-8702-x, PMID 29264775.

Rodrigues LR, Teixeira JA, Oliveira R. Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J. 2006;32(3):135-42. doi: 10.1016/j.bej.2006.09.012.

Nitschke M, Pastore GM. Production and properties of a surfactant obtained from bacillus subtilis grown on cassava wastewater. Bioresour Technol. 2006;97(2):336-41. doi: 10.1016/j.biortech.2005.02.044, PMID 16171690.

Cooper DG, Paddock DA. Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol. 1984;47(1):173-6. doi: 10.1128/aem.47.1.173-176.1984, PMID 16346455.

Makkar RS, Cameotra SS. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol. 2002;58(4):428-34. doi: 10.1007/s00253-001-0924-1, PMID 11954787.

Abouseoud M, Yataghene A, Amrane A, Maachi R. Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. J Ind Microbiol Biotechnol. 2008;35(11):1303-8. doi: 10.1007/s10295-008-0411-0, PMID 18712561.

Sharma D, Saharan BS, Chauhan N, Procha S, Lal S. Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springer Plus. 2015 Dec;4(1):4. doi: 10.1186/2193-1801-4-4, PMID 25674491.

Espinosa-Urgel M, Ramos JL. Cell density-dependent gene contributes to efficient seed colonization by pseudomonas putida KT2440. Appl Environ Microbiol. 2004;70(9):5190-8. doi: 10.1128/AEM.70.9.5190-5198.2004, PMID 15345399.

Ozdemir G, Malayoglu U. Wetting characteristics of aqueous rhamnolipids solutions. Colloids Surf B Biointerfaces. 2004;39(1-2):1-7. doi: 10.1016/j.colsurfb.2004.08.006, PMID 15542333.

Ishigami Y, Gama Y, Ishii F, Choi YK. Colloid chemical effect of polar head moieties of a rhamnolipid-type biosurfactant. Langmuir. 1993;9(7):1634-6. doi: 10.1021/la00031a006.

Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P. Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Americ Oil Chem Soc. 1996;73(1):149-51. doi: 10.1007/BF02523463.

Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011;1(1):5. doi: 10.1186/2191-0855-1-5, PMID 21906330.

Gupta S, Raghuwanshi N, Varshney R, Banat IM, Srivastava AK, Pruthi PA. Accelerated in vivo wound healing evaluation of microbial glycolipid-containing ointment as a transdermal substitute. Biomed Pharmacother. 2017;94:1186-96. doi: 10.1016/j.biopha.2017.08.010, PMID 28830069.

Yi G, Son J, Yoo J, Park C, Koo H. Emulsan-based nanoparticles for in vivo drug delivery to tumors. Biochem Biophys Res Commun. 2019;508(1):326-31. doi: 10.1016/j.bbrc.2018.11.106, PMID 30502086.

Yi G, Son J, Yoo J, Park C, Koo H. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Nanomedicine. 2019;19:12-21. doi: 10.1016/j.nano.2019.03.015, PMID 30981820.

Salazar Bryam AM, Yoshimura I, Santos LP, Moura CC, Santos CC, Silva VL. Silver nanoparticles stabilized by ramnolipids: effect of pH. Colloids Surf B Biointerfaces. 2021;205:111883. doi: 10.1016/j.colsurfb.2021.111883, PMID 34102528.

Athira K, Gurrala L, Kumar DVR. Biosurfactant-mediated biosynthesis of CuO nanoparticles and their antimicrobial activity. Appl Nanosci. 2021 Apr;11(4):1447-57. doi: 10.1007/s13204-021-01766-y.

Maitani Y, Yano S, Hattori Y, Furuhata M, Hayashi K. Liposome vector containing biosurfactant-complexed DNA as herpes simplex virus thymidine kinase gene delivery system. J Liposome Res. 2006;16(4):359-72. doi: 10.1080/08982100600992443, PMID 17162578.

Cheng C, Wu Z, McClements DJ, Zou L, Peng S, Zhou W. Improvement on stability, loading capacity and sustained release of rhamnolipids modified curcumin liposomes. Colloids Surf B Biointerfaces. 2019;183:110460. doi: 10.1016/j.colsurfb.2019.110460, PMID 31473408.

Lewinska A, Domza l-Kedzia M, Wojtowicz K, Bazylinska U. Surfactin-stabilized poly (D, L-lactide) nanoparticles for potential skin application. Colloids Surf A Physicochem Eng Aspects. 2022;648:129216. doi: 10.1016/j.colsurfa.2022.129216.

Muthukumar B, Nandini MS, Elumalai P, Balakrishnan M, Satheeshkumar A, AlSalhi MS. Enhancement of cell migration and wound healing by nano-herb ointment formulated with biosurfactant, silver nanoparticles and Tridax procumbens. Front Microbiol. 2023;14:1225769. doi: 10.3389/fmicb.2023.1225769, PMID 37601383.

Sedaghat Doost A, Devlieghere F, Dirckx A, Van Der Meeren P. Fabrication of Origanum compactum essential oil nanoemulsions stabilized using quillaja saponin biosurfactant. J Food Process Preserv. 2018;42(7):e13668. doi: 10.1111/jfpp.13668.

Kural F, Gursoy RN. Formulation and characterization of surfactin-containing self-microemulsifying drug delivery systems (SF-SMEDDS); 2011. p. 171-86.

Lewinska A, Domżał Kędzia M, Jaromin A, Łukaszewicz M. Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system. Pharmaceutics. 2020;12(10):953. doi: 10.3390/pharmaceutics12100953, PMID 33050380.

Barradas TN, de Holanda e Silva KG. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ Chem Lett. 2021;19(2):1153-71. doi: 10.1007/s10311-020-01142-2.

Katiyar SS, Ghadi R, Kushwah V, Dora CP, Jain S. Lipid and biosurfactant based core–shell-type nanocapsules having high drug loading of paclitaxel for improved breast cancer therapy. ACS Biomater Sci Eng. 2020;6(12):6760-9. doi: 10.1021/acsbiomaterials.0c01290, PMID 33320604.

Azevedo MA, Cerqueira MA, Gonçalves C, Amado IR, Teixeira JA, Pastrana L. Encapsulation of vitamin D3 using rhamnolipids-based nanostructured lipid carriers. Food Chem. 2023;427:136654. doi: 10.1016/j.foodchem.2023.136654, PMID 37399642.

Zhu Z, Wen Y, Yi J, Cao Y, Liu F, McClements DJ. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: tea saponin, Quillaja saponin, and Tween 80. J Colloid Interface Sci. 2019;536:80-7. doi: 10.1016/j.jcis.2018.10.024, PMID 30359887.

Seghal Kiran G, Thajuddin N, Hema TA, Idhayadhulla A, Surendar Kumar R, Selvin J. Optimization and characterization of rhamnolipid biosurfactant from sponge-associated marine fungi Aspergillus sp. MSF1. Desalin Water Treat. 2010;24(1-3):257-65. doi: 10.5004/DWT.2010.1569.

Gaur VK, Tripathi V, Gupta P, Dhiman N, Regar RK, Gautam K. Rhamnolipids from planococcus spp. and their mechanism of action against pathogenic bacteria. Bioresour Technol. 2020;307:123206. doi: 10.1016/j.biortech.2020.123206, PMID 32240926.

Miao S, Dashtbozorg SS, Callow NV, Ju LK. Rhamnolipids as platform molecules for the production of potential anti-zoospore agrochemicals. J Agric Food Chem. 2015;63(13):3367-76. doi: 10.1021/acs.jafc.5b00033, PMID 25790115.

Bages Estopa S, White DA, Winterburn JB, Webb C, Martin PJ. Production and separation of a trehalolipid biosurfactant. Biochem Eng J. 2018;139:85-94. doi: 10.1016/j.bej.2018.07.006.

Saravanakumari P, Mani K. Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol. 2010;101(22):8851-4. doi: 10.1016/j.biortech.2010.06.104, PMID 20637606.

Kim JH, Oh YR, Hwang J, Jang YA, Lee SS, Hong SH. Value-added conversion of biodiesel into the versatile biosurfactant sophorolipid using starmerella bombicola. Cleaner Eng Technol. 2020;1:100027. doi: 10.1016/j.clet.2020.100027.

Jamal P. Microbial surface tension-active compounds: production and industrial application perspectives: a review. IJBB. 2017;3(8):273-92. doi: 10.25141/2475-3432-2017-8.0273.

Dubey P, Raina P, Prabhune A, Kaul Ghanekar R. Cetyl alcohol and oleic acid sophorolipids exhibit anticancer activity. Int J Pharm Pharm Sci. 2016 Mar 1:399-402.

Andrade CJd, Andrade LMd, Bution ML, Heidi Dolder MA, Cavalcante Barros FF, Pastore GM. Optimizing alternative substrate for simultaneous production of surfactin and 2,3-butanediol by bacillus subtilis LB5a. Biocatal Agric Biotechnol. 2016;6:209-18. doi: 10.1016/j.bcab.2016.04.004.

Chitra B, Vijayakumar ABS. Assessment on antimicrobial properties of surfactin from bacillus subtilis on protoplasts and spheroplasts of pathogenic bacteria. Int J Curr Pharm Sci 2017;9(1). doi: 10.22159/ijcpr.2017v9i1.16612.

Sharma R, Oberoi HS. Biosurfactant-aided bioprocessing: Industrial applications and environmental impact. Recent advances in applied microbiology 2017. doi: 10.1007/978-981-10-527503.

Yaraguppi DA, Bagewadi ZK, Patil NR, Mantri N. Iturin: a promising cyclic lipopeptide with diverse applications. Biomolecules. 2023;13(10):1515. doi: 10.3390/biom13101515, PMID 37892197.

Castro GR, Panilaitis B, Kaplan DL. Emulsan, a tailorable biopolymer for controlled release. Bioresour Technol. 2008;99(11):4566-71. doi: 10.1016/j.biortech.2007.06.059, PMID 17937982.

Esmaeili H, Mousavi SM, Hashemi SA, Lai CW. Application of biosurfactants in the removal of oil from emulsion. In: Elsevier. Green Sustainable Process for Chemical and Environmental Engineering and Science; 2021. p. 107-27. doi: 10.1016/B978-0-12-822696-4.00008-5.

Sondhi S. Application of biosurfactant as an emulsifying agent. In: Elsevier. Applications of Next Generation Biosurfactants in the Food Sector; 2023. doi: 10.1016/B978-0-12-824283-4.00025-3.

Kumari V. 7 biosurfactant as an antimicrobial and biodegradable agent a review. Microbial surfactants. Appl Environ Reclam Biorem. 2022;3:1932. doi: 10.1201/9781003260165-7.

Franzetti A, Tamburini E, Banat IM. Applications of biological surface-active compounds in remediation technologies. Biosurfactants; 2010. doi: 10.1007/978-1-4419-5979-9_9.

Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol. 2019;126(1):2-13. doi: 10.1111/jam.14057, PMID 30066414.

Muthusamy KK, Gopalakrishnan S, Ravi T, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci. 2008;94:736-47.

Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133(2):183-98. doi: 10.1016/j.envpol.2004.06.009, PMID 15519450.

Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol. 2017;232:389-97. doi: 10.1016/j.biortech.2017.02.047, PMID 28238638.

Ismail R, Baaity Z, Csoka I. Regulatory status quo and prospects for biosurfactants in pharmaceutical applications. Drug Discov Today. 2021;26(8):1929-35. doi: 10.1016/j.drudis.2021.03.029, PMID 33831583.

Mgbechidinma CL, Akan OD, Zhang C, Huang M, Linus N, Zhu H. Integration of green economy concepts for sustainable biosurfactant production-a review. Bioresour Technol. 2022;364:128021. doi: 10.1016/j.biortech.2022.128021, PMID 36167175.

Published

07-03-2024

How to Cite

POOMALAI, P., KRISHNAN, J., RAVICHANDRAN, A., & SURESHKUMAR, R. (2024). BIOSURFACTANTS: SUSTAINABLE ALTERNATIVE TO SYNTHETIC SURFACTANTS AND THEIR APPLICATIONS. International Journal of Applied Pharmaceutics, 16(2), 34–43. https://doi.org/10.22159/ijap.2024v16i2.50061

Issue

Section

Review Article(s)