QUANTITATIVE DETERMINATION OF SOME NON-STEROIDAL ANTI-INFLAMMATORY DRUGSAND THEIR ACID DISSOCIATION CONSTANTS BY DIRECT POTENTIOMETRY

Authors

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50111

Keywords:

Chemometrics, Potentiometry, Acid-base constants, Flurbiprofen, Ibuprofen, Ketoprofen, Non-steroidal anti-inflammatory drugs

Abstract

Objective: A potentiometric titration method was applied to determine Non-steroidal anti-inflammatory drugs. The quantitative analysis and the treatment of the primary data are based on a nonlinear regression procedure using commercial software. A general formula valid for every type of acid-base titration, derived before is used as a direct input.

Methods: Potentiometric titration of ibuprofen, flurbiprofen, and ketoprofen with sodium hydroxide solution (0.1 mol/l). The solutions of ibuprofen, flurbiprofen, and ketoprofen were prepared in solvent CH3OH: H2O (40:60%). The determination was carried out using a 713 Metrohm pH meter, equipped with Metrohm combined electrode ref. 6.0228.000 Pt1000 with temperature sensor and auto burette. The analysis was performed at ionic strength (I=0.2 mol/l KCl) and t = 25±0.2 oC.

Results: The discussed substances were analyzed using potentiometric titration with a standard sodium hydroxide solution (0.1 mol/l). The experimental data V, mL/E, mV and the conditions of these titrations were used as input in the DataFit program fixing the following parameters Vo =100.0 ml; Ct (NaOH) = 0.1000 mol/l; S = 59.16 mV (corresponding to 25 oC theoretical value) and Kw = 1.2 10-14 (ionic strength 0.2mol/l). The analytical results for ibuprofen, flurbiprofenand ketoprofen  were determined with good accuracy (error +0.4 % foribuprofen, +0.2 % for flurbiprofenand +0.2 % for ketoprofen) and precision (1 % for the three). The quantity and acid-base constants of ibuprofen, flurbiprofen, and ketoprofen were determined alone and in tablets. The validation of the method showed very good accuracy and precision.

Conclusion: The present approach can be successfully used in routine analysis of the study drugs in quality control laboratories.

Downloads

Download data is not yet available.

References

Becker DE, Phero JC. Drug therapy in dental practice: nonopioid and opioid analgesics. Anesth Prog. 2005 Winter; 52(4):140-149. doi: 10.2344/0003-3006(2005)52[140:DTD]2.0.CO;2.

Kean W, Buchanan WW. The Use of NSAIDs in rheumatic Disorders 2005: a global perspective. Inflammo pharmacology. 2005; 13(4):343-370. doi: 10.1163/156856005774415565.

Ong KS, Seymour RA. Maximizing the safety of nonsteroidal anti-inflammatory drug use forpostoperative dental pain: anevidence-based approach. Anesth Prog. 2003; 50(2):62-74. PMCID: PMC2007429,PMID: 12866802.

Bunaciu AA, GrasuA, Aboul-Enein HY. Pharmaceutical applications of a flurbiprofen sensor. Anal Chim Acta. 1995; 311(2):193–197. https://doi.org/10.1016/0003-2670(95)00165-V.

Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions.AAPS Pharm Sci Tech. 2002 Jun; 3(2):35-45. doi: 10.1208/PT030210.

Sajeev C, Jadhav PR, Ravi Shankar D, Saha RN. Determination of flurbiprofen in pharmaceutical formulations by UV spectrophotometry and liquid chromatography. Anal Chim Acta. 2002; 463(2):207–217. doi:10.1016/S0003-2670(02)00426-9

Anderson BD, Conradi RA. Predictive relationships in the water solubility of salts of a nonsteroidal anti-inflammatory drug. J Pharm Sci. 1985 Aug; 74(8):815–820. DOI: 10.1002/JPS.2600740803.

Rafols C, Roses M, Bosch E. Dissociation constants of several non-steroidal anti-inflammatory drugs in isopropyl alcohol/water mixtures. Anal Chim Acta. 1997 Sep; 350(1-2):249–255. https://doi.org/10.1016/S0003-2670(97)00307-3.

Espitalier F, Biscans B, Laguerie C. Physicochemical Data on Ketoprofen in Solutions. J Chem Eng Data. 1995 Nov; 40(6):1222–1224. https://doi.org/10.1021/je00022a016

Ghezzi P, Melillo G, Meazza C, Sacco S, Pellegrini L, Asti C, PorzioS, MarulloA, SabbatiniV, Caselli G, Bertini R. Differential contribution of R and S isomers in ketoprofen anti-inflammatory activity: role of cytokine modulation. J Pharmacol Exp Ther. 1998 Dec; 287 (3):969–974. PMID: 9864281.

Sanchez-Dasi MJ, Garrigues S, Cervera ML, De La Guardia M.On-line solvent recycling: a tool for the development of clean analytical chemistry in flow injection Fourier transform infrared spectrometry. Determination of ketoprofen. Anal Chim Acta. 1998 April; 361(3):253–260.https://doi.org/10.1016/S0003-2670(98)00027-0.

Bashyal S, Ibuprofen and its Different Analytical and Manufacturing Methods: A Review. Asian J Pharm Clin Res. 2018 July; 11(7):25-29. doi:https://doi.org/10.22159/ajpcr.2018.v11i7.24484.

Al-Mousawy J, Al-Hussainy Z, Alaayedi M. Formulation and evaluation of effervescent granules of Ibuprofen. Int J Appl Pharm. 2019 Sep; 11(6):66-69. doi:10.22159/ijap.2019v11i6.34912.

Mitić SS, Miletić GZ, Pavlović AN, Arsić BB, ŽivanovićVV. Quantitative analysis of ibuprofen in pharmaceuticals and human control serum using kinetic spectrophotometry. J Serb Chem Soc. 2008 August; 73 (8–9):879–890. doi:10.2298/JSC0809879M.

Imanto T, Wikantyasning ER, Nurwaini S, Amalia M, Sambudi NS, Harun NY. Preparation and Solid-State Characterization of Ketoprofen-Succinic Acid-Saccharin Co-Crystal with Improved Solubility. Int J App Pharm. 2024; 16(1):275-279. Doi:https://dx.doi.org/10.22159/ijap.2024v16i1.48829.

Hamoudová R, Pospíšilová M. Determination of Ibuprofen and Flurbiprofen in Pharmaceuticals by Capillary Zone Electrophoresis. J Pharm and Biom Anal. 2006 Jun; 41(4):1463-1467. doi: 10.1016/j.jpba.2006.03.024.

Kandula RK, Sundararajan R. Stability indicating RP-HPLC assay of Hydrocodone and Ibuprofen in Tablets. Int J App Pharm. 2019 May; 11(4):285-290. doihttp://dx.doi.org/10.22159/ijap.2019v11i4.33376.

Yilmaz B, Alkan E. Determination of Flurbiprofen in Pharmaceutical Preparations by GC–MS. Arabian Journal of Chemistry. 2019 Dec; 12(8):2077-2083. https://doi.org/10.1016/j.arabjc.2014.12.038.

LuoL, Tan M, LuoY. Determination of related substances in Ketoprofen injection by RP-HPLC Method. Pak J Pharm Sci. 2019 Jul; 32(4): 1607-1614. PMID: 31608880.

Mehmood T, Hanif S, Azhar F, Ali I, Alafnan A, Hussain T, Moin A, Alamri MA, Syed MA. HPLC Method Validation for the Estimation of Lignocaine HCl, Ketoprofen and Hydrocortisone: Greenness Analysis Using AGREE Score. Int J Mol Sci. 2023; 24(1):440: 1-11. https://doi.org/10.3390/ijms24010440.

LIMA AB, FARIA EO, MONTES RHO, CUNHA RR, RICHTER EM, MUNOZ R AA, DOS SANTOS WTP. ELECTROCHEMICAL OXIDATION OF IBUPROFEN AND ITS VOLTAMMETRIC DETERMINATION AT A BORON-DOPED DIAMOND ELECTRODE. ELECTROANALYSIS. 2013 JUN; 25(7): 1585-1588. HTTPS://DOI.ORG/10.1002/ELAN.201300014

CHAVES S, AGUILAR P, TORRES L, GIL E, LUZ R, DAMOS F, MUNOZ R, RICHTER E, DOS SANTOS W. ELECTROANALYSIS. 2015 JUL; 27(12): 2785-2791. HTTPS://DOI.ORG/10.1002/ELAN.201500306

ÁLVAREZ-ROMERO GA, LOZADA-ASCENCIO SM, RODRÍGUEZ-ÁVILA JA, GALÁN-VIDAL CA, PÁEZ-HERNÁNDEZ ME. POTENTIOMETRIC QUANTIFICATION OF SACCHARIN BY USING A SELECTIVE MEMBRANE FORMED BY PYRROLE ELECTROPOLYMERIZATION. FOOD CHEM. 2010 JUN; 120(4): 1250-1254. HTTPS://DOI.ORG/10.1016/J.FOODCHEM.2009.11.072

NAZAROV VA, SOKOLOVA EI, ANDROCHICK KA, EGOROV VV; BELYAEV SA, YURKSHTOVICH TL. IBUPROFEN-SELECTIVE ELECTRODE ON THE BASIS OF A NEUTRAL CARRIER, N-TRIFLUOROACETYLBENZOIC ACID HEPTYL ESTER. J ANAL CHEM. 2010 AUG; 65: 960-963. HTTPS://DOI.ORG/10.1134/S1061934810090121

SOUSA TFA, AMORIM CG, MONTENEGRO MCBSM, ARAÚJO AN. CYCLODEXTRIN BASED POTENTIOMETRIC SENSOR FOR DETERMINATION OF IBUPROFEN IN PHARMACEUTICALS AND WATERS SENS. ACTUATORS B CHEMICAL. 2013 JAN; 176: 660-666. HTTPS://DOI.ORG/10.1016/J.SNB.2012.09.016

LENIK J, WARDAK C. PROPERTIES OF IBUPROFEN ION-SELECTIVE ELECTRODES BASED ON THE ION PAIR COMPLEX OF TETRAOCTYLAMMONIUM CATION. CENT. EUR. J. CHEM. 2010 MARCH; 8(2): 382-391. HTTPS://DOI.ORG/10.2478/S11532-010-0005-3

HASSAN SSM, MAHMOUD WH, ELMOSALLAMY MAF, ALMARZOOQUI MH. NOVEL IBUPROFEN POTENTIOMETRIC MEMBRANE SENSORS BASED ON TETRAPHENYLPORPHYRINATO INDIUM(III). ANAL. SCI. 2003 MAY; 19 (5): 675-679. HTTPS://DOI.ORG/10.2116/ANALSCI.19.675

SKOOG AD, HOLLER JF, CROUCH SR. PRINCIPLES OF INSTRUMENTAL ANALYSIS, 7TH ED., CENGAGE LEARNING, 2017. ISBN 1305577213, 9781305577213

SANTINI AO, DE OLIVEIRA JE, PEZZA HR, PEZZA L. A NEW POTENTIOMETRIC IBUPROFENATE ION SENSOR IMMOBILIZED IN A GRAPHITE MATRIX FOR DETERMINATION OF IBUPROFEN IN TABLETS. MICROCHEM J 2006 SEP; 84(1-2): 44-49. DOI: 10.1016/J.MICROC.2006.04.007

RIVERA-HERNÁNDEZA SI, ÁLVAREZ-ROMEROA GA, CORONA-AVENDAÑOB SA, PÁEZ-HERNÁNDEZA ME, GALÁN-VIDALA CA, ROMERO-ROMOB M, RAMÍREZ-SILVAC MT. DEVELOPMENT OF A SECOND TYPE ELECTRODE BASED ON THE SILVER/SILVER IBUPROFENATE PAIR FOR IBUPROFEN QUANTIFICATION IN PHARMACEUTICAL SAMPLES. QUIM NOVA 2017 JAN; 40(1): 68-73. HTTP://DX.DOI.ORG/10.21577/0100-4042.20160166

Ràfols C, Rosés M, Bosch E. Dissociation constants of several non-steroidal anti-inflammatory drugs in isopropyl alcohol/water mixtures. Anal Chim Acta. 1997 Sep; 350(1-2):249-255. https://doi.org/10.1016/s0003-2670(97)00307-3.

Meloun M, Bordovska S, Galla L. The thermodynamic dissociation constants of four non-steroidal anti-inflammatory drugs by the least-squares nonlinear regression of multi wavelength spectrophotometric pH-titration data. J Pharm Biomed Anal. 2007 Nov; 45(4):552-564.doi: 10.1016/j.jpba.2007.07.029.

Domańska U, Pobudkowska A, Pelczarska A, Gierycz P. pKa and solubility of drugs in water, ethanol, and 1-octanol. J PhysChem B. 2009 Jul; 113(26):8941-8947. doi: 10.1021/jp900468w.

Herzfeldt CD, Kümmel R. Dissociation constants, solubilities and dissolution rates of some selected nonsteroidal anti-inflammatories. Drug Dev Industrial Pharm. 1983; 9(5):767-793. https://doi.org/10.3109/03639048309039887.

Manderscheid M, Eichinger T. Determination of pKa Values by Liquid Chromatography. J Chromatogr Sci. 2003 Jul; 41(6):323-326. doi: 10.1093/chromsci/41.6.323.

Ruiz R, Roses M, Rafols C, Bosch E. Critical Validation of a New Simpler Approach to Estimate Aqueous pKa of Drugs Sparingly Soluble in Water. Anal Chim Acta. 2005 Sep; 550(1- 2):210-221. https://doi.org/10.1016/j.aca.2005.06.058.

Ren H, Wang L, Wang X, Liu X, Jiang S. Measurement of acid dissociation constant and ionic mobilities of 3-nitro-tyrosine and 3-chloro-tyrosineby capillary zone electrophoresis. J Pharm Biomed Anal. 2013 Apr; 77:83-87. doi: 10.1016/j.jpba.2013.01.015.

Assouma DC, Kwa-Koffi KE, Niamien PM, AvoBilé EB, Aka KH. Experimental and Theoretical Studies of Oxalic Acid Dissociation in Water-Ethanol Solvents. International Journal of Science and Research (IJSR). 2015 Dec; 4(12):280-286. doi:10.21275/v4i12.nov151830.

Gumustas M, Sanli S, Sanli N, Ozkan SA. Determination of pK(a) values of some antihypertensive drugs by liquid chromatography and simultaneous assay of lercanidipine and enalapril in their binary mixtures. Talanta. 2010 Sep; 82(4):1528- 1537. doi: 10.1016/j.talanta.2010.07.037.

CanbayHS, Demiralay EC, Alsancak G, Ozkan SA. Chromatographic Determination of pKa Values of Some Water-Insoluble Arylpropionic Acids and Arylacetic Acids in Acetonitrile + Water Media. J Chem Eng Data. 2011March; 56(5):2071–2076. https://doi.org/10.1021/je1010533.

Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK. The Significance of Acid/Base Properties in Drug Discovery. Chem Soc Rev. 2013 Jan; 42(2):485-496. doi: 10.1039/c2cs35348b.

Ríos Martínez CH, Dardonville C. Rapid Determination of Ionization Constants (pKa) by UV Spectroscopy Using 96-Well Microtiter Plates. ACS Med Chem Lett. 2013 Jan; 4(1):142-145. https://doi.org/10.1021/ml300326v.

Dyrssen D, Jagner D, Wengelin F. Computer Calculation of Ionic Equilibria and TitrationProcedures: with specific Reference to Analytical Chemistry. Stockholm: Almqvist & Wiksell; 1968. 250 p. https://doi.org/10.1016/S0003-2670(01)85520-3.

Ingman F, Johansson A, Johansson S, Karlsson R. Titration of mixtures of acids of nearly equal strengths. Anal Chim Acta. 1973 March; 64(1):113-120. https://doi.org/10.1016/S0003-2670(00)86898-1.

Islamoglu F, Yuksek H, Özdemir M. Acidic properties of some 1,2,4-triazole derivatives in non-aqueous media. Der Chemica Sinica. 2011; 2(3):117-124. ISSN: 0976-8505.

Thanavelan R, Manikandan G, Ramalingam G, Thanikachalam V. Mixed ligand chelates of Cd2+ with 2-(1-(aminomethyl)cyclohexyl) acetic acid and dicarboxylic acids. Der Chemica Sinica. 2011; 2 (4):90-98. ISSN: 0976-8505.

Maslarska V, Tencheva J, Budevsky O. New Approach in the treatment of data from an acid–base potentiometric titration I. Monocomponent systems of monofunctional acids and bases. Anal Bioanal Chem. 2003 Jan; 375(2):217–222. doi: 10.1007/s00216-002-1671-6.

International Conference on Harmonization. ICH Harmonized Tripartite Guideline Validation of Analytical Procedures: Text and Methodology Q2 (R1) ICH. Geneva; 2005 Nov. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r1-validation-analytical-procedures-text-and-methodology-step-5-first-version_en.pdf.

Published

11-03-2024

How to Cite

MASLARSKA, V. (2024). QUANTITATIVE DETERMINATION OF SOME NON-STEROIDAL ANTI-INFLAMMATORY DRUGSAND THEIR ACID DISSOCIATION CONSTANTS BY DIRECT POTENTIOMETRY. International Journal of Applied Pharmaceutics, 16(3). https://doi.org/10.22159/ijap.2024v16i3.50111

Issue

Section

Original Article(s)