IN SILICO STUDY OF THE SYNERGISTIC INTERACTION OF 5-FLUOROURACIL AND CURCUMIN ANALOGUES AS INHIBITORS OF B-CELL LYMPHOMA 2 PROTEIN
DOI:
https://doi.org/10.22159/ijap.2023.v15s2.03Keywords:
Synergistic, 5-fluorouracil, Lapatinib, Curcumin analog, BCL2Abstract
Objective: The research objective is to explore the potential for synergistic inhibition of two curcumin analogs combined with 5-fluorouracil (5-FU) against the B-cell lymphoma 2 (BCL-2) protein.
Methods: We investigated the synergistic inhibition of two curcumin analogs, namely, (1E,4E)-1,5-bis(4-hydroxyphenyl)penta-1,4-dien-3-one (AC01) and (1E,4E)-1,5-bis(3,4-dihydroxyphenyl)penta-1,4-dien-3-one (AC02), each combined with 5-FU by calculating their binding free energies and binding stability. An in silico investigation of the synergistic interaction of ligand pairs was conducted using the multiple ligand simultaneous docking (MLSD) technique with the AutoDock Vina package. The stability of interactions and binding free energies of each BCL-2 and curcumin analogs were examined by applying molecular dynamics techniques with the Gromacs package and MMPBSA method.
Results: All ligand pairs had displayed strong binding affinity, as evidenced by highly negative free energy values, indicating a robust association with BCL-2. Molecular dynamics simulations were conducted over 100 ns, confirming good stability with controlled RMSD changes, suggesting that the ligand pairs had remained securely bound to the BCL-2 binding site. Additionally, RMSF analysis and energy decomposition had revealed that ligand interactions did not influence protein residue fluctuations during the simulation, and the protein-ligand complexes had maintained stability throughout the simulation. Furthermore, binding free energy calculations using the MMPBSA method had consistently shown negative values, signifying stable interactions with BCL-2 for all ligand pairs.
Conclusion: In conclusion, our study revealed that AC01 and AC02, when combined with 5-FU, had the ability to intercalate into the P2 and P4 sites of BCL-2. This suggested that AC01 and AC02 held promise for further study as candidates for anticancer drugs, individually or in combination with 5-FU.
Downloads
References
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20(3):175-93. doi: 10.1038/s41580-018-0089-8, PMID 30655609.
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363. doi: 10.3389/fonc.2022.985363, PMID 36313628. https://www.frontiersin.org/articles/10.3389/fonc.2022.985363.
Ponce Cusi R, Calaf GM. Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation. Int J Oncol. 2016;48(2):774-82. doi: 10.3892/ijo.2015.3298, PMID 26691280.
Zoli W, Ulivi P, Tesei A, Fabbri F, Rosetti M, Maltoni R. Addition of 5-fluorouracil to doxorubicin-paclitaxel sequence increases caspase-dependent apoptosis in breast cancer cell lines. Breast Cancer Res. 2005;7(5):R681-9. doi: 10.1186/bcr1274, PMID 16168113.
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets. 2013 Jan 1;17(1):61-75. doi: 10.1517/14728222.2013.733001, PMID 23173842.
Wu DW, Huang CC, Chang SW, Chen TH, Lee H. Bcl-2 stabilization by paxillin confers 5-fluorouracil resistance in colorectal cancer. Cell Death Differ. 2015;22(5):779-89. doi: 10.1038/cdd.2014.170, PMID 25323586.
Ramesh P, Medema JP. BCL-2 family deregulation in colorectal cancer: potential for BH3 mimetics in therapy. Apoptosis. 2020;25(5-6):305-20. doi: 10.1007/s10495-020-01601-9, PMID 32335811.
Guo XF, Zhu XF, Zhong GS, Deng BG, Gao ZT, Wang H. Lapatinib, a dual inhibitor of EGFR and HER2, has synergistic effects with 5-fluorouracil on esophageal carcinoma. Oncol Rep. 2012;27(5):1639-45. doi: 10.3892/or.2012.1659, PMID 22293713.
Wainberg ZA, Anghel A, Desai AJ, Ayala R, Luo T, Safran B. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo. Clin Cancer Res. 2010 Feb 28;16(5):1509-19. doi: 10.1158/1078-0432.CCR-09-1112, PMID 20179222.
Panda P, Verma HK, Bhaskar LVKS. Precision medicine revolutionizing esophageal cancer treatment: surmounting hurdles and enhancing therapeutic efficacy through targeted drug therapies. Onco. 2023;3(3):127-46. doi: 10.3390/onco3030010.
Adjibade P, Simoneau B, Ledoux N, Gauthier WN, Nkurunziza M, Khandjian EW. Treatment of cancer cells with Lapatinib negatively regulates general translation and induces stress granules formation. PLOS ONE. 2020 May 4;15(5):e0231894. doi: 10.1371/journal.pone.0231894, PMID 32365111.
Kim HP, Yoon YK, Kim JW, Han SW, Hur HS, Park J. Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2. PLOS ONE. 2009 Jun 16;4(6):e5933. doi: 10.1371/journal.pone.0005933, PMID 19529774.
Clariano M, Marques V, Vaz J, Awam S, Afonso MB, Jesus Perry M. Monocarbonyl analogs of curcumin with potential to treat colorectal cancer. Chem Biodivers. 2023 Mar 1;20(3):e202300222. doi: 10.1002/cbdv.202300222, PMID 36807727.
Luo SM, Wu YP, Huang LC, Huang SM, Hueng DY. The anti-cancer effect of four curcumin analogues on human glioma cells. Onco Targets Ther. 2021;14:4345-59. doi: 10.2147/OTT.S313961, PMID 34376999.
Semlali A, Contant C, Al-Otaibi B, Al-Jammaz I, Chandad F. The curcumin analog (PAC) suppressed cell survival and induced apoptosis and autophagy in oral cancer cells. Sci Rep. 2021;11(1):11701. doi: 10.1038/s41598-021-90754-x, PMID 34083581.
Praseetha NG, Divya UK, Nair S. Identifying the potential role of curcumin analogues as anti-breast cancer agents; an in silico approach. Egypt J Med Hum Genet. 2022;23(1):100. doi: 10.1186/s43042-022-00312-x.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-303. doi: 10.1093/nar/gky427, PMID 29788355.
Shen C, Hu X, Gao J, Zhang X, Zhong H, Wang Z. The impact of cross-docked poses on the performance of machine learning classifier forprotein–ligand binding pose prediction. J Cheminform. 2021;13(1):81. doi: 10.1186/s13321-021-00560-w, PMID 34656169.
Ramirez D, Caballero J. Is it reliable to take the molecular docking top-scoring position as the best solution without considering available structural data? Molecules. 2018;23(5). doi: 10.3390/molecules23051038, PMID 29710787.
Nur Aidah Lya CITRA S, Arfan A, Alroem A, Bande LS, Irnawati I, Arba M. Docking-based workflow and ADME prediction of some compounds in Curcuma longa and andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. JRP 2023;27(1):221-31. doi: 10.29228/jrp.305.
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3(1):33. doi: 10.1186/1758-2946-3-33, PMID 21982300.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785-91. doi: 10.1002/jcc.21256, PMID 19399780.
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576.
Eberhardt J, Santos Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891-8. doi: 10.1021/acs.jcim.1c00203, PMID 34278794.
A Asnawi, Aman LO, Nursamsiar, A Yuliantini, E Febrina. Molecular docking and molecular dynamic studies: screening phytochemicals of Acalypha indica against braf kinase receptors for potential use in melanocytic tumours. RJC. 2022;15(2):1352-61. doi: 10.31788/RJC.2022.1526769.
Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B. GROMACS: high-performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25. doi: 10.1016/j.softx.2015.06.001.
Febrina E, Asnawi A. Lead compound discovery using pharmacophore-based models of small-molecule metabolites from human blood as inhibitor cellular entry of SARS-CoV-2. J Pharm Pharmacogn Res. 2023;11(5):810-22. doi: 10.56499/jppres23.1688_11.5.810.
Sethy C, Kundu CN. 5-fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition. Biomed Pharmacother. 2021;137:111285. doi: 10.1016/j.biopha.2021.111285, PMID 33485118.
Shepard G, Arrowsmith ER, Murphy P, Barton Jr JH, Peyton JD, Mainwaring M. A phase II study with lead‐in safety cohort of 5‐fluorouracil, oxaliplatin, and lapatinib in combination with radiation therapy as neoadjuvant treatment for patients with localized HER2‐positive esophagogastric adenocarcinomas. Oncologist. 2017 Oct 1;22(10):1152-e98. doi: 10.1634/theoncologist.2017-0186, PMID 28765502.
Shamas Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013 Apr;5(4):a008714. doi: 10.1101/cshperspect.a008714, PMID 23545417.
Wang L, Doherty GA, Judd AS, Tao ZF, Hansen TM, Frey RR. Discovery of a-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor. ACS Med Chem Lett. 2020 Oct 8;11(10):1829-36. doi: 10.1021/acsmedchemlett.9b00568, PMID 33062160.
Hann CL, Daniel VC, Sugar EA, Dobromilskaya I, Murphy SC, Cope L. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res. 2008 Apr;68(7):2321-8. doi: 10.1158/0008-5472.CAN-07-5031, PMID 18381439.
Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202-8. doi: 10.1038/nm.3048, PMID 23291630.
Parrondo R, de Las Pozas A, Reiner T, Perez Stable C. ABT-737, a small molecule Bcl-2/Bcl-xL antagonist, increases antimitotic-mediated apoptosis in human prostate cancer cells. Peer J. 2013;1:e144. doi: 10.7717/peerj.144, PMID 24058878.
Published
How to Cite
Issue
Section
Copyright (c) 2023 LA ODE AMAN, ARFAN, AIYI ASNAWI
This work is licensed under a Creative Commons Attribution 4.0 International License.