PROTEIN-PROTEIN INTERACTION ANALYSIS TO IDENTIFY NUCLEAR FACTOR-ERYTHROID-2 FACTOR 2 (NRF2) INHIBITION BY EXTRACELLULAR ENZYMES FROM WATER KEFIR ORGANISMS
DOI:
https://doi.org/10.22159/ijap.2023.v15s2.20Keywords:
Protein-Protein Interaction, Nuclear factor-erythroid-2 factor 2 (Nrf2), Inhibition, Extracellular Enzymes, Water KefirAbstract
Objective: The study aimed to investigate the interactions between twelve extracellular enzymes and nuclear factor erythroid 2–related factor 2 (Nrf2) in the active site.
Methods: The Zdock web server was accessed to perform molecular docking simulations for predicting interactions between the extracellular enzymes and the active site of Nrf2. The Z score analysis revealed enzymes with high scores, indicating strong and statistically significant interactions with Nrf2.
Results: DNase 1, a-amylase, and lecithinase C exhibited notably high Z scores, suggesting potential key players in modulating Nrf2-mediated signaling pathways. The examination of salt bridges showed enzymes with more ionic interactions, suggesting enhanced stability and potential for strong binding within the active site of Nrf2. This characteristic might be crucial for enzymatic inhibition of Nrf2’s activity.
Conclusion: In conclusion, the findings highlight enzymes, including DNase 1, a-amylase, and lecithinase C, as promising candidates for further exploration as potential inhibitors of NRF2-mediated cellular responses.
Downloads
References
Abalenikhina YV, Erokhina PD, Seidkuliyeva AA, Zav’yalova OA, Shchul’kin AV, Yakusheva EN. Intracellular location and function of nuclear factor of erythroid Origin 2 (Nrf2) in modeling oxidative stress in vitro. IP Pavlov Russ Med Biol Herald. 2022;30(3):296-304. doi: 10.17816/PAVLOVJ105574.
Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med. 2015;88(B):101-7. doi: 10.1016/j.freeradbiomed.2015.05.034, PMID 26057936.
Abed DA, Goldstein M, Albanyan H, Jin H, Hu L. Discovery of direct inhibitors of Keap1–Nrf2protein–protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B. 2015 Jul 1;5(4):285-99. doi: 10.1016/j.apsb.2015.05.008, PMID 26579458.
Laureys D, Aerts M, Vandamme P, De Vuyst L. The buffer capacity and calcium concentration of water influence the microbial species diversity, grain growth, and metabolite production during water kefir fermentation. Front Microbiol. 2019;10:2876. doi: 10.3389/fmicb.2019.02876, PMID 31921054.
Stadie J. Metabolic activity and symbiotic interaction of bacteria and yeasts in water kefir; 2013.
Pendon MD, Bengoa AA, Iraporda C, Medrano M, Garrote GL, Abraham AG. Water kefir: factors affecting grain growth and health‐promoting properties of the fermented beverage. J Appl Microbiol. 2022;133(1):162-80. doi: 10.1111/jam.15385, PMID 34822204.
Fels L, Jakob F, Vogel RF, Wefers D. Structural characterization of the exopolysaccharides from water kefir. Carbohydr Polym. 2018;189:296-303. doi: 10.1016/j.carbpol.2018.02.037, PMID 29580412.
Martinez Torres A, Gutierrez Ambrocio S, Heredia-del-Orbe P, Villa Tanaca L, Hernandez Rodriguez C. Inferring the role of microorganisms in water kefir fermentations. Int J Food Sci Technol. 2017;52(2):559-71. doi: 10.1111/ijfs.13312.
Pugliero S, Lima DY, Rodrigues AM, Bogsan CSB, Rogero MM, Punaro GR. Kefir reduces nitrosative stress and upregulates Nrf2 in the kidneys of diabetic rats. Int Dairy J. 2021 Mar 1;114:104909. doi: 10.1016/j.idairyj.2020.104909.
Bengoa AA, Iraporda C, Garrote GL, Abraham AG. Kefir micro‐organisms: their role in grain assembly and health properties of fermented milk. J Appl Microbiol. 2019;126(3):686-700. doi: 10.1111/jam.14107, PMID 30218595.
Rapposelli S, Gaudio E, Bertozzi F, Gul S. Editorial: protein–protein interactions: drug discovery for the future. Front Chem. 2021;9:811190. doi: 10.3389/fchem.2021.811190, PMID 34912787.
Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. ZDOCK server: interactive docking prediction ofprotein–protein complexes and symmetric multimers. Bioinformatics. 2014;30(12):1771-3. doi: 10.1093/bioinformatics/btu097, PMID 24532726.
Laskowski RA. PDBsum1: a standalone program for generating PDBsum analyses. Protein Sci. 2022;31(12):e4473. doi: 10.1002/pro.4473, PMID 36251626.
Jiang ZY, Chu HX, Xi MY, Yang TT, Jia JM, Huang JJ. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation. Plos One. 2013;8(9):e75076. doi: 10.1371/journal.pone.0075076, PMID 24066166.
Xiao X, Hu H, Zhong Y, Chen Y, Tang K, Pan Z. Microglia Sirt6 modulates the transcriptional activity of NRF2 to ameliorate high-fat diet-induced obesity. Mol Med. 2023;29(1):108. doi: 10.1186/s10020-023-00676-9, PMID 37582706.
Bury M, Le Calvé B, Lessard F, Dal Maso T, Saliba J, Michiels C. NFE2L3 controls colon cancer cell growth through regulation of DUX4, a CDK1 inhibitor. Cell Rep. 2019;29(6):1469-1481.e9. doi: 10.1016/j.celrep.2019.09.087, PMID 31693889.
Schmoll D, Engel CK, Glombik H. The Keap1–Nrf2protein–protein interaction: a suitable target for small molecules. Drug Discov Today Technol. 2017;24:11-7. doi: 10.1016/j.ddtec.2017.10.001, PMID 29233294.
Hancock R, Schaap M, Pfister H, Wells G. Peptide inhibitors of the Keap1–Nrf2 protein-protein interaction with improved binding and cellular activity. Org Biomol Chem. 2013;11(21):3553-7. doi: 10.1039/c3ob40249e, PMID 23615671.
Published
How to Cite
Issue
Section
Copyright (c) 2023 WIDHYA ALIGITA, MARLIA SINGGIH, ENTRIS SUTRISNO, I. KETUT ADNYANA
This work is licensed under a Creative Commons Attribution 4.0 International License.