REVOLUTIONIZING DRUG DELIVERY INNOVATION: LEVERAGING AI-DRIVEN CHATBOTS FOR ENHANCED EFFICIENCY

Authors

DOI:

https://doi.org/10.22159/ijap.2024v16i2.50182

Keywords:

Drug delivery innovation, AI-driven chatbots, Pharmaceutical industry, Artificial intelligence (AI), ChatGPT, Drug discovery, Medication counseling, Drug interactions, Formulation optimization, Predictive modelling

Abstract

This study aims to delineate the pivotal role of ChatGPT, an Artificial intelligence-driven (AI) language model, in revolutionizing drug delivery research within the pharmaceutical sciences domain. The investigation adopted a structured approach involving systematic literature exploration across databases such as PubMed, ScienceDirect, IEEE Xplore, and Google Scholar. A selection criterion emphasizing peer-reviewed articles, conference proceedings, patents, and seminal texts highlights the integration of AI-driven chatbots, specifically ChatGPT, into various facets of drug delivery research and development. ChatGPT exhibits multifaceted contributions to drug delivery innovation, streamlining drug formulation optimization, predictive modeling, regulatory compliance, and fostering patient-centric approaches. Real-world case studies have underscored its efficacy in expediting drug development timelines and enhancing research efficiency. This paper delves into the diverse applications of ChatGPT, showcasing its potential across drug delivery systems. It elucidates its capabilities in accelerating research phases, facilitating formulation development, predictive modeling for efficacy and safety, and simplifying regulatory compliance. This discussion outlines the transformative impact of ChatGPT in reshaping drug delivery methodologies. In conclusion, ChatGPT, an AI-driven chatbot, has emerged as a transformative tool in pharmaceutical research. Their integration expedites drug development pipelines, ensures effective drug delivery solutions, and augments healthcare advancements. Embracing AI tools such as ChatGPT has become pivotal in evolving drug delivery methodologies for global patient welfare.

Downloads

Download data is not yet available.

References

Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019 Apr;18(6):463-77. doi: 10.1038/s41573-019-0024-5, PMID 30976107.

Zhao A, Wu Y. Future implications of ChatGPT in the pharmaceutical industry: drug discovery and development. Front Pharmacol. 2023 Jul;14(5):1194216. doi: 10.3389/fphar.2023.1194216, PMID 37529703.

Al-Malah Ki. Optimization of drug solubility using aspen plus: acetylsalicylic acid (aspirin) solubility-a second case study. Asian J Pharm Clin Res. 2020 Apr;13(4):178-84. doi: 10.22159/ajpcr.2020.v13i4.37143.

Azodi CB, Tang J, Shiu SH. Opening the black box: interpretable machine learning for geneticists. Trends Genet. 2020 Jun;36(6):442-55. doi: 10.1016/j.tig.2020.03.005, PMID 32396837.

Maru AD, Lahoti SR. Formulation and evaluation of ointment containing sunflower wax. Asian J Pharm Clin Res. 2019 Aug;12(8):115-20.

Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019 Mar;24(3):773-80. doi: 10.1016/j.drudis.2018.11.014, PMID 30472429.

Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye Knudsen M, Moskalev A, Aliper A. Artificial intelligence for aging and longevity research: recent advances and perspectives. Ageing Res Rev. 2019 Jan;49(2):49-66. doi: 10.1016/j.arr.2018.11.003, PMID 30472217.

Davies NM. Adapting artificial intelligence into the evolution of pharmaceutical sciences and publishing: technological Darwinism. J Pharm Pharm Sci. 2023 Mar;26(3):11349. doi: 10.3389/jpps.2023.11349, PMID 37034476.

Heck TG. What artificial intelligence knows about 70 kDa heat shock proteins, and how we will face this ChatGPT era. Cell Stress Chaperones. 2023 May;28(3):225-9. doi: 10.1007/s12192-023-01340-1, PMID 37058213.

AL-Malah KI. Optimization of drug solubility using aspen plus: acetylsalicylic acid (aspirin) solubility-a second case study. Asian J Pharm Clin Res. 2020 Apr;13:178-84. doi: 10.22159/ajpcr.2020.v13i4.37143.

Car LT, Dhinagaran DA, Kyaw BM, Kowatsch T, Joty S, Theng YL. Conversational agents in health care: a scoping review and conceptual analysis. J Med Internet Res. 2020 Aug;22(8):17-58.

Juhi A, Pipil N, Santra S, Mondal S, Behera JK, Mondal H, Sr SS, Mondal S, IV JKB, Mondal H. The capability of ChatGPT in predicting and explaining common drug-drug interactions. Cureus. 2023 Mar;15(3):1-7.

Huang J, Tan M. The role of ChatGPT in scientific communication: writing better scientific review articles. Am J Cancer Res. 2023 Mar;13(4):1148-54. PMID 37168339.

Ruksakulpiwat S, Kumar A, Ajibade A. Using ChatGPT in medical research: current status and future directions. J Multidiscip Healthc. 2023 May;16(3):1513-20. doi: 10.2147/JMDH.S413470, PMID 37274428.

Javaid M, Haleem A, Singh RP. ChatGPT for healthcare services: an emerging stage for an innovative perspective. Benchcounc Trans Benchmarks Stand Eval. 2023 Feb;3(1):100-5. doi: 10.1016/j.tbench.2023.100105.

Musolf AM, Holzinger ER, Malley JD, Bailey Wilson JE. What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics. Hum Genet. 2022 Sep;141(9):1515-28. doi: 10.1007/s00439-021-02402-z, PMID 34862561.

Petch J, Di S, Nelson W. Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can J Cardiol. 2022 Feb;38(2):204-13. doi: 10.1016/j.cjca.2021.09.004, PMID 34534619.

Kumar D, Kumar P, Ahmed I, Singh S. Integrating artificial intelligence in disease diagnosis, treatment, and formulation development: a review. Asian J Pharm Clin Res. 2023 Nov;16(3):1-8. doi: 10.22159/ajpcr.2023.v16i11.48193.

Sallam M. ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare (Basel). 2023 Mar;11(6):1-20. doi: 10.3390/healthcare11060887, PMID 36981544.

Talevi A. Computer-aided drug discovery and design: recent advances and future prospects. Methods Mol Biol. 2024 May;2714(5):1-20. doi: 10.1007/978-1-0716-3441-7_1, PMID 37676590.

Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015 Mar;20(3):318-31. doi: 10.1016/j.drudis.2014.10.012, PMID 25448759.

Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021 Jan;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010, PMID 33099022.

Yang F, Darsey JA, Ghosh A, Li HY, Yang MQ, Wang S. Artificial intelligence and cancer drug development. Recent Pat Anticancer Drug Discov. 2022;17(1):2-8. doi: 10.2174/1574892816666210728123758, PMID 34323201.

Sharma G, Thakur A. ChatGPT in drug discovery. Theor Comp Chem. 2023 Jan;2(10):1-10.

Ahmed I, Kajol M, Hasan U, Datta PP. ChatGPT vs. bard: a comparative study. Tech RXIV. 2023 Jul;3(8):1-10.

Menon D, Shilpa K. Chatting with ChatGPT’: analyzing the factors influencing users’ intention to use the open AI’s ChatGPT using the UTAUT model. Heliyon. 2023 Nov;9(11):e20962. doi: 10.1016/j.heliyon.2023.e20962, PMID 37928033.

Sarker A, Klein AZ, Mee J, Harik P, Gonzalez Hernandez G. An interpretable natural language processing system for written medical examination assessment. J Biomed Inform. 2019 Oct;98(4):103268. doi: 10.1016/j.jbi.2019.103268, PMID 31421211.

Roukos DH. Systems medicine: a real approach for future personalized oncology? Pharmacogenomics. 2010 Mar;11(3):283-7. doi: 10.2217/pgs.10.36, PMID 20235782.

Xu R, Li L, Wang QQ. dRiskKB: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text. BMC Bioinform. 2014 Apr;15(1):105. doi: 10.1186/1471-2105-15-105, PMID 24725842.

Herland M, Khoshgoftaar TM, Wald R. A review of data mining using big data in health informatics. J Big Data. 2014 Dec;1(1):1-35.

Wu WT, Li YJ, Feng AZ, Li L, Huang T, Xu AD. Data mining in clinical big data: the frequently used databases, steps, and methodological models. Mil Med Res. 2021 Dec;8(1):44. doi: 10.1186/s40779-021-00338-z, PMID 34380547.

Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev. 2019 Nov;151-152(5):169-90. doi: 10.1016/j.addr.2019.05.001, PMID 31071378.

Published

07-03-2024

How to Cite

MALKAWI, R. (2024). REVOLUTIONIZING DRUG DELIVERY INNOVATION: LEVERAGING AI-DRIVEN CHATBOTS FOR ENHANCED EFFICIENCY. International Journal of Applied Pharmaceutics, 16(2), 52–56. https://doi.org/10.22159/ijap.2024v16i2.50182

Issue

Section

Review Article(s)