PARTITIONING BASED PHYSICOCHEMICAL MODELS FOR ASSESSING INTESTINAL PERMEABILITY AND ABSORPTION OF DRUGS

Authors

  • AHMED ELGENDY Department of Pharmaceutics, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia. Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, Pennsylvania, 19131, USA. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
  • ADEBOYE ADEJARE Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, Pennsylvania, 19131, USA

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50223

Keywords:

Partitioning based physicochemical models, In vitro models, Intestinal permeability and absorption

Abstract

Oral administration of drugs is highly preferred for almost all human beings than any other route of drug delivery except during some health challenges. Therefore, permeability assessment of drugs across intestinal membrane is essential in the early stages of drug discovery for time and cost reasons. Animals, including humans, have been used for decades as in vivo models for determining intestinal drug permeability and absorption. However, in vivo models are very invasive, time-consuming, and not cost-effective methods. Numerous in vitro models have been used to screen drug permeability and absorption through intestinal membranes. In this article partitioning based physicochemical models that can predict a compound/drug permeability potential across intestinal membrane will be elaborated upon.

Downloads

Download data is not yet available.

References

Goodwin JT, Mao B, Vidmar TJ, Conradi RA, Burton PS. Strategies toward predicting peptide cellular permeability from computed molecular descriptors. J Pept Res. 1999;53(4):355-69. doi: 10.1034/j.1399-3011.1999.00072.x, PMID 10406214.

Mohammed SA, Mohsin K, Mohammad AA, Muhammad ZA. Advances in oral drug delivery. Front Pharmacol. 2021;19(12):618411.

Stein WD. Transport and diffusion across cell membranes. Available from: Vol. XViii. FL: Orlando; 1986. Available from: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/27587/0000631.pdf;sequence=1.

Tshepelevitsh S, Hernits K, Leito I. Prediction of partition and distribution coefficients in various solvent pairs with COSMO-RS. J Comput Aided Mol Des. 2018;32(6):711-22. doi: 10.1007/s10822-018-0125-y, PMID 29846868.

Amezqueta S, Fernandez Pumarega A, Farre S, Luna D, Fuguet E, Roses MJ. Lecithin liposomes and microemulsions as new chromatographic phases. J Chromatogr A. 2020;1611:460596. doi: 10.1016/j.chroma.2019.460596, PMID 31610920.

Yamauchi S, Inoue D, Sugano K. Permeation characteristics of tetracyclines in parallel artificial membrane permeation assay II: Effect of divalent metal ions and mucin. ADMET DMPK. 2020;8(2):129-38. doi: 10.5599/admet.797, PMID 35300369.

Dressman JB, Amidon GL, Fleisher D. Absorption potential: estimating the fraction absorbed for orally administered compounds. J Pharm Sci. 1985;74(5):588-9. doi: 10.1002/jps.2600740523, PMID 4020642.

Theorie der Alkoholnarkose MH. Arch Exp Pathol Pharmacol. 1899;42:109-18.

Overton E. Studies on anesthesia: at the same time a contribution to general pharmacology. Jena, Germany: Gustay Fischer; 1901.

Hansch C, Dunn WJ. Linear relationships between lipophilic character and biological activity of drugs. J Pharm Sci. 1972;61(1):1-19. doi: 10.1002/jps.2600610102, PMID 4550859.

Smith RN, Hansch C, Ames MM. Selection of a reference partitioning system for drug design work. J Pharm Sci. 1975;64(4):599-606. doi: 10.1002/jps.2600640405, PMID 1142068.

Hansch C, Rockwell SD, Jow PY, Leo A, Steller EE. Substituent constants for correlation analysis. J Med Chem. 1977;20(2):304-6. doi: 10.1021/jm00212a024, PMID 836503.

Garst JE, Wilson WC. Accurate, wide-range, automated, high-performance liquid chromatographic method for the estimation of octanol/water partition coefficients I: Effect of chromatographic conditions and procedure variables on accuracy and reproducibility of the method. J Pharm Sci. 1984;73(11):1616-23. doi: 10.1002/jps.2600731133, PMID 6520766.

El Tayar N, Tsai RS, Testa B, Carrupt PA, Leo A. Partitioning of solutes in different solvent systems: the contribution of hydrogen-bonding capacity and polarity. J Pharm Sci. 1991;80(6):590-8. doi: 10.1002/jps.2600800619, PMID 1941553.

Chiranjeevi P, Andrew S, Vinod L. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm. 2009;5:1264-76.

Rogers JA, Wong A. The temperature dependence and thermodynamics of partitioning of phenols in the n-octanol-water system. International Journal of Pharmaceutics. 1980;6(3-4):339-48. doi: 10.1016/0378-5173(80)90117-9.

Ong S, Liu H, Qiu X, Bhat G, Pidgeon C. Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. Anal Chem. 1995;67(4):755-62. doi: 10.1021/ac00100a011, PMID 7702190.

Lee CP, de Vrueh RLA, Smith PL. Selection of development candidates based on in vitro permeability measurements. Adv Drug Deliv Rev. 1997;23(1-3):47-62. doi: 10.1016/S0169-409X(96)00425-5.

Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46(1-3):27-43. doi: 10.1016/s0169-409x(00)00128-9, PMID 11259831.

Padmasree M, Vishwanath BA. Development and characterization of pegylated capecitabine liposomal formulations with anticancer activity towards colon cancer. Int J App Pharm. 2022;14(2):135-42. doi: 10.22159/ijap.2022v14i2.43658.

Jalajakshi MN, Chandrakala V, Srinivasan S. An overview: recent development in transdermal drug delivery. Int J Pharm Pharm Sci. 2022;14(10):1-9. doi: 10.22159/ijpps.2022v14i10.45471.

Imam SS. Nanoparticles: the future of drug delivery. Int J Curr Pharm Sci. 2023;15(6):8-15. doi: 10.22159/ijcpr.2023v15i6.3076.

Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238-52. doi: 10.1016/s0022-2836(65)80093-6, PMID 5859039.

Princely S, Dhanaraju MD. Design, formulation, and characterization of liposomal-encapsulated gel for transdermal delivery of fluconazole. Asian J Pharm Clin Res. 2018;11:417-24. doi: 10.22159/ajpcr.2018.v11i8.25621.

Rodriques P, Thacker K, Bhupendra GP. Exploring lipid-based drug delivery in cancer therapy via liposomal formulations. Asian J Pharm Clin Res 2022;15(5):15-22. doi: 10.22159/ajpcr.2022.v15i5.43668.

Betageri GV, Rogers JA. Correlation of partitioning of nitroimidazoles in the n-octanol/saline and liposome systems with pharmacokinetic parameters and quantitative structure-activity relationships (QSAR). Pharm Res. 1989;6(5):399-403. doi: 10.1023/a:1015931431817, PMID 2748530.

Gangurde PK, Navya Ajitkumar B, Kumar L. Lamotrigine lipid nanoparticles for effective treatment of epilepsy: a focus on brain targeting via nasal route. J Pharm Innov. 2019;14(2):91-111. doi: 10.1007/s12247-018-9343-z.

Teaima MH, Gebril MI, Allah FIA, El-Nabarawi MA. Niosomes versus proniosomes as promising drug delivery systems in treatment of diabetes mellitus. Int J App Pharm. 2022;14(5):32-40. doi: 10.22159/ijap.2022v14i5.44039.

Katz Y, Diamond JM. A method for measuring nonelectrolyte partition coefficients between liposomes and water. J Membr Biol. 1974;17(1):69-86. doi: 10.1007/BF01870173, PMID 4600821.

Plember van Balen G, Caron G, Ermondi G, Pagliara A, Grandi T, Bouchard G. Lipophilicity behaviour of the zwitterionic antihistamine cetirizine in phosphatidylcholine liposomes/water systems. Pharm Res. 2001;18(5):694-701. doi: 10.1023/a:1011049830615, PMID 11465428.

Balon K, Riebesehl BU, Muller BW. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm Res. 1999;16(6):882-8. doi: 10.1023/a:1018882221008, PMID 10397609.

Liu XY, Nakamura C, Yang Q, Kamo N, Miyake J. Immobilized liposome chromatography to study drug-membrane interactions. Correlation with drug absorption in humans. J Chromatogr A. 2002;961(1):113-8. doi: 10.1016/s0021-9673(02)00505-8, PMID 12186381.

Osterberg T, Svensson M, Lundahl P. Chromatographic retention of drug molecules on immobilised liposomes prepared from egg phospholipids and from chemically pure phospholipids. Eur J Pharm Sci. 2001;12(4):427-39. doi: 10.1016/s0928-0987(00)00183-4, PMID 11231109.

Stępnik KE, Malinowska I, Roj ET. In vitro and in silico determination of oral, jejunum and caco-2 human absorption of fatty acids and polyphenols. Micellar Liq Chromatogr. 2014;12(130):265-73. https://www.sciencedirect.com/science/article/abs/pii/S0039914014004950?via%3Dihub.

Martin AJP, Synge RLP. A new form of chromatogram employing two liquid phases: a theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J. 1941;35(12):1358-68. doi: 10.1042/bj0351358, PMID 16747422.

Biagi GL, Barbaro AM, Guerra MC, Gamba MF. Partition data of cephalosporins determined by means of reversed-phase thin-layer chromatography. J Chromatogr. 1969;44(1):195-8. doi: 10.1016/s0021-9673(01)92522-1, PMID 5344168.

Bate Smith EC, Westall RG. Chromatographic behaviour and chemical structure I. Some naturally occuring phenolic substances. Biochim Biophys Acta. 1950;4:427-40. doi: 10.1016/0006-3002(50)90049-7.

Brent DA, Sabatka JJ, Minick DJ, Henry DW. A simplified high-pressure liquid chromatography method for determining lipophilicity for structure-activity relationships. J Med Chem. 1983;26(7):1014-20. doi: 10.1021/jm00361a014, PMID 6864729.

Tomlinson E. Chromatographic hydrophobic parameters in correlation analysis of structure-activity relationships. J Chromatogr. 1975;113(1):1-45. doi: 10.1016/s0021-9673(00)88797-x, PMID 1094027.

McCall JM. Liquid-lipquid partition coefficients by high-pressure liquid chromatography. J Med Chem. 1975;18(6):549-52. doi: 10.1021/jm00240a003, PMID 1151966.

Henry D, Block JH, Anderson JL, Carlson GR. Use of high-pressure liquid chromatography for quantitative structure-activity relationship studies of sulfonamides and barbiturates. J Med Chem. 1976;19(5):619-26. doi: 10.1021/jm00227a009, PMID 944785.

Pidgeon C, Ong S, Liu H, Qiu X, Pidgeon M, Dantzig AH. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J Med Chem. 1995;(4):590-4. doi: 10.1021/jm00004a004, PMID 7861406.

Pidgeon C. Solid phase membrane mimetics: immobilized artificial membranes. Enzyme Microb Technol. 1990;12(2):149-50. doi: 10.1016/0141-0229(90)90090-d, PMID 1366578.

Pidgeon C. Method for solid membrane mimetics. US Patent. 1990;7(4):879-927.

Otto S, Marcus C, Pidgeon C, Jefcoate C. A novel adrenocorticotropin-inducible cytochrome P450 from rat adrenal microsomes catalyzes polycyclic aromatic hydrocarbon metabolism. Endocrinology. 1991;129(2):970-82. doi: 10.1210/endo-129-2-970, PMID 1649753.

Chui WK, Wainer IW. Enzyme-based high-performance liquid chromatography supports as probes of enzyme activity and inhibition: the immobilization of trypsin and alpha-chymotrypsin on an immobilized artificial membrane high-performance liquid chromatography support. Anal Biochem. 1992;201(2):237-45. doi: 10.1016/0003-2697(92)90334-4, PMID 1321567.

Kallury KM, Lee WE, Thompson M. Enhancement of the thermal and storage stability of urease by covalent attachment to phospholipid-bound silica. Anal Chem. 1992;64(9):1062-8. doi: 10.1021/ac00033a018, PMID 1317138.

Tsopelas F, Vallianatou T, Tsantili Kakoulidou A. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery. Expert Opin Drug Discov. 2016;11(5):473-88. doi: 10.1517/17460441.2016.1160886, PMID 26966996.

Kepczyńska E, Bojarski J, Haber P, Kaliszan R. Retention of barbituric acid derivatives on immobilized artificial membrane stationary phase and its correlation with biological activity. Biomed Chromatogr. 2000;14(4):256-60. doi: 10.1002/1099-0801(200006)14:4<256::AID-BMC982>3.0.CO;2-M, PMID 10861737.

Yang CY, Cai SJ, Liu H, Pidgeon C. Immobilized artificial membranes-screens for drug membrane interactions. Adv Drug Deliv Rev. 1997;23(1-3):229-56. doi: 10.1016/S0169-409X(96)00438-3.

Genty M, Gonzalez G, Clere C, Desangle Gouty V, Legendre JY. Determination of the passive absorption through the rat intestine using chromatographic indices and molar volume. Eur J Pharm Sci. 2001;12(3):223-9. doi: 10.1016/s0928-0987(00)00175-5, PMID 11113641.

Turowski M, Kaliszan R. Keratin immobilized on silica as a new stationary phase for chromatographic modelling of skin permeation. J Pharm Biomed Anal. 1997;15(9-10):1325-33. doi: 10.1016/s0731-7085(96)02009-2, PMID 9226560.

Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41(7):1007-10. doi: 10.1021/jm970530e, PMID 9544199.

Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175(3):880-5. doi: 10.1016/0006-291x(91)91647-u, PMID 1673839.

Sugano K, Hamada H, Machida M, Ushio H. High throughput prediction of oral absorption: improvement of the composition of the lipid solution used in parallel artificial membrane permeation assay. J Biomol Screen. 2001;6(3):189-96. doi: 10.1177/108705710100600309, PMID 11689115.

Dressman JB, Amidon GL, Fleisher D. Absorption potential: estimating the fraction absorbed for orally administered compounds. J Pharm Sci. 1985;74(5):588-9. doi: 10.1002/jps.2600740523, PMID 4020642.

Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000;44(1):301-12. doi: 10.1016/s1056-8719(00)00113-1, PMID 11274897.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830.

Van de Waterbeemd H. The fundamental variables of the biopharmaceutics classification system (BCS): a commentary. Eur J Pharm Sci. 1998;7(1):1-3. doi: 10.1016/s0928-0987(98)00051-7, PMID 9845781.

Sawada GA, Ho NF, Williams LR, Barsuhn CL, Raub TJ. Transcellular permeability of chlorpromazine demonstrating the roles of protein binding and membrane partitioning. Pharm Res. 1994;11(5):665-73. doi: 10.1023/a:1018916027099, PMID 8058634.

Dressman JB, Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000;11Suppl 2:S73-80. doi: 10.1016/s0928-0987(00)00181-0, PMID 11033429.

Published

07-05-2024

How to Cite

ELGENDY, A., & ADEJARE, A. (2024). PARTITIONING BASED PHYSICOCHEMICAL MODELS FOR ASSESSING INTESTINAL PERMEABILITY AND ABSORPTION OF DRUGS. International Journal of Applied Pharmaceutics, 16(3), 1–6. https://doi.org/10.22159/ijap.2024v16i3.50223

Issue

Section

Review Article(s)