BIOSYNTHESIS, CHARACTERIZATION AND EVALUATION OF SILVER NANOPARTICLES FROM THE LEAF EXTRACT OF PREMNA INTIGRIFOLIA L. AS A POTENTIAL ANTICANCER AGENT

Authors

  • SPANDANA K. Department of Botany, JSS College of Arts, Commerce and Science (Autonomous), Ooty road, Mysuru, Karnataka, India
  • ARUN K. SHETTAR Department of Pre-Clinical Research and Drug Development, Cytxon Biosolutions Pvt. Ltd., Hubballi, Karnataka, India
  • RASHMI S. Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India https://orcid.org/0000-0002-1122-5876

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50260

Keywords:

Green synthesis, Nanoparticles, Anticancer, Plant, Therapy

Abstract

Objective: In this study, plant-based silver nanoparticles were synthesized and characterized from Premna integrifolia leaf extract to test the viability towards anticancer properties.  

Methods: Preliminary identification of silver nanoparticles was validated by Visual observation and confirmed for the characterization by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier-transform Infrared Spectroscopy (FTIR) analysis. Further synthesized nanoparticles were evaluated against non-small lung cancer cells (A549) by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay.

Results: Aqueous leaf extract of Premna intigrifolia was synthesized for silver nanoparticles and showed an average size from 35nm to 100 nm through SEM studies. EDX showed a strong signal confirming the formation of silver nanoparticles in the metallic silver region at 5Kev, and the FTIR spectrum showed changes in some peaks of the aqueous extract with functional groups. The newly synthesized silver nanoparticles showed significant anticancer properties targeting lung cancer A549 cell line against standard drug Epotoside with a 50% Inhibitory Concentration (IC50) value of 78.431 µg.

Conclusion: The results affirm that biosynthesized silver nanoparticles can be used as an alternative to chemical medicines to cure cancer.

Downloads

Download data is not yet available.

References

Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064-110. doi: 10.1021/cr068445e, PMID 18543879.

Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol. 2019;7:489. doi: 10.3389/fbioe.2019.00489, PMID 32083068.

Afolalu SA, Soetan SB, Ongbali SO, Abioye AA, Oni AS. Morphological characterization and physio-chemical properties of nanoparticle-review. OP Conf. Series. IOP Conf Ser: Mater Sci Eng. 2019;640(1):1-11. doi: 10.1088/1757-899X/640/1/012065.

Jaithliya T. A review on nanotechnology: nanopartcles. J Pharma Pharma Sci. 2017;2(2):1-3. doi: 10.29011/2574-7711.100027.

Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel). 2015;8(11):7278-308. doi: 10.3390/ma8115377, PMID 28793638.

Alsaiari NS, Alzahrani FM, Amari A, Osman H, Harharah HN, Elboughdiri N. Plant and microbial approaches as green methods for the synthesis of nanomaterials: synthesis, applications, and future perspectives. Molecules. 2023;28(1):1-38. doi: 10.3390/molecules28010463, PMID 36615655.

Hasan S. A review on nanoparticles: their synthesis and types. Res J Recent Sci. 2015;4:1-3.

Kumararaja G, Saneesha PN, Kumar SS, Parveen VVS, Rahim SFA, Shamna KV. Development and characterization of silver nanoparticles (AgNPs) using aqueous leaves broth of artemisia vulgaris L., and its anti-fungal activity. Res J Pharm Technol. 2019;12(10):4822-6. doi: 10.5958/0974-360X.2019.00834.5.

Saeed A, Bilal M, Gul T, Kumam P, Khan A, Sohail M. Fractional order stagnation point flow of the hybrid nanofluid towards a stretching sheet. Sci Rep. 2021;11(1):20429. doi: 10.1038/s41598-021-00004-3, PMID 34650086.

Soni A, Gautam Y, Kumar I, Kumari C, Devi M, Yamini Y. Silver nanoparticle in pharmaceuticals as advanced drug delivery system. Int J Pharm Sci Rev Res. 2023;79(2):227-39. doi: 10.47583/ijpsrr.2023.v79i02.036.

Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi: 10.3390/ijms17091534, PMID 27649147.

Yaqoob SB, Adnan R, Rameez Khan RMR, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem. 2020;8(376):376. doi: 10.3389/fchem.2020.00376, PMID 32582621.

Barabadi H, Ovais M, Shinwari ZK, Saravanan M. Anti-cancer green bionanomaterials: present status and future prospects. Green Chem Lett Rev. 2017;10(4):285-314. doi: 10.1080/17518253.2017.1385856.

Lee W, Loo C, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10(6):481-9. doi: 10.1016/j.ajps.2015.08.009.

Sivarajakumar R, Mallukaraj D, Kadavakollu M, Neelakandan N, Chandran S, Bhojaraj S. Nanoparticles for the treatment of lung cancers. J Young Pharm. 2018;10(3):276-81. doi: 10.5530/jyp.2018.10.62.

Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 2021;11(5):2804-37. doi: 10.1039/d0ra09941d, PMID 35424248.

Mali PY. Premna integrifolia L.: a review of its biodiversity, traditional uses and phytochemistry. Ancient Sci Life. 2015;35(1):4-11. doi: 10.4103/0257-7941.165624.

Biradi M, Hullatti K. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines. Bangladesh J Pharmacol. 2015;10(1):205-8. doi: 10.3329/bjp.v10i1.21658.

Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2012;90:173-6. doi: 10.1016/j.saa.2012.01.029, PMID 22336049.

Narayanan KB, Sakthivel N. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus lour. Mater Res Bull. 2011;46(10):1708-13. doi: 10.1016/j.materresbull.2011.05.041.

AKS, SBM, SS. Pharmacological applications of silver nanoparticles synthesized using aqueous leaf extract of ximenia americana. JNST. 2019;5(1):593-8. doi: 10.30799/jnst.183.19050104.

Chinnasamy G, Chandrasekharan S, Koh TW, Bhatnagar S. Synthesis, characterization, antibacterial and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front Microbiol. 2021;12:611560. doi: 10.3389/fmicb.2021.611560, PMID 33679635.

Ahmad N, Bhatnagar S, Ali SS, Dutta R. Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int J Nanomedicine. 2015;10:7019-30. doi: 10.2147/IJN.S94479, PMID 26648715.

Jemal K, Sandeep BV, Pola S. Synthesis, characterization and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived extracts mediated silver nanoparticles. J Nanomater. 2017:1-11.

Mehmood A, Murtaza G, Bhatti TM, Kausar R. Phyto-mediated synthesis of silver nanoparticles from Melia azedarach L. leaf extract: characterization and antibacterial activity. Arab J Chem. 2017;10:S3048-53. doi: 10.1016/j.arabjc.2013.11.046.

Alam M. Analyses of biosynthesized silver nanoparticles produced from strawberry fruit pomace extracts in terms of biocompatibility, cytotoxicity, antioxidant ability, photodegradation, and in-silico studies. J King Saud Univ Sci. 2022;34(8):102327. doi: 10.1016/j.jksus.2022.102327.

Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47(4):936-42. PMID 3802100.

Kodasi B, Kamble RR, Shettar AK, Hoskeri JH, Keri RS, Metre TV. Novel jointured green synthesis of chitosan silver nanocomposite: an approach towards reduction of nitroarenes, anti-proliferative, wound healing and antioxidant applications. Int J Biol Macromol. 2023;246:125578. doi: 10.1016/j.ijbiomac.2023.125578, PMID 37379943.

Hebbar NU, Patil AR, Gudimani P, Shastri SL, Shastri LA, Joshi SD. Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. J Mol Struct. 2022;1269:1-15. doi: 10.1016/j.molstruc.2022.133795.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi: 10.1016/0022-1759(83)90303-4, PMID 6606682.

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez Torres MDP, Acosta Torres LS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi: 10.1186/s12951-018-0392-8, PMID 30231877.

Liu X, Bing T, Shangguan D. Microbead-based platform for multiplex detection of DNA and protein. ACS Appl Mater Interfaces. 2017;9(11):9462-9. doi: 10.1021/acsami.7b00418, PMID 28248077.

Devanesan S, AlSalhi MS. Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. Int J Nanomedicine. 2021;16:3343-56. doi: 10.2147/IJN.S307676, PMID 34017172.

Singh C, Kumar J, Kumar P, Chauhan BS, Tiwari KN, Mishra SK. Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnol Biotechnol Equip. 2019;33(1):359-71. doi: 10.1080/13102818.2019.1577699.

Shilpa K, Kavitha R, Damodharan N. Anticancer activity of silver nanoparticle of prodigiosin on lung cancer. Int J Appl Pharm. 2023;15(1):264-8.

Asif M, Yasmin R, Asif R, Ambreen A, Mustafa M, Umbreen S. Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose Response. 2022;20(1):15593258221088709. doi: 10.1177/15593258221088709, PMID 35592270.

Kumar S, Daimary RM, Swargiary M, Brahma A, Kumar S, Singh M. Biosynthesis of silver nanoparticles using Premna herbacea leaf extract and evaluation of its antimicrobial activity against bacteria causing dysentery. Int J Pharm Biol Sci. 2013;4(4):378-84.

Arockia John Paul J, Karunai Selvi B, Karmegam N. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous swiss albino mice. Appl Nanosci. 2015;5(8):937-44. doi: 10.1007/s13204-014-0397-z.

Sreenivasulu V, Kumar NS, Suguna M, Asif M, Al-Ghurabi EH, Huang ZX. Biosynthesis of silver nanoparticles using plant root extract: characterization, antibacterial activity and electrochemical detection of dopamine. Int J Electrochem Sci. 2016;11(12):9959-71. doi: 10.20964/2016.12.69.

Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res. 2016;55(36):9557-77. doi: 10.1021/acs.iecr.6b00861.

Wali S, Gharge S, Naik A, Kadgaonkar M, Bhandurge P, Suryawanshi SS. Isolation, characterization and identification of bioactive compounds from herbal medicines and medicinal plant extracts by fourier transform infrared spectroscopy: a brief review. Int J Ayurvedic Med. 2022;13(3):570-8. doi: 10.47552/ijam.v13i3.2753.

Murali M, Anandan S, Ansari MA, Alzohairy MA, Alomary MN, Asiri SMM. Genotoxic and cytotoxic properties of zinc oxide nanoparticles phyto-fabricated from the obscure morning glory plant Ipomoea obscura (L.) ker gawl. Molecules. 2021;26(4):891. doi: 10.3390/molecules26040891, PMID 33567661.

Basavanna V, Chandramouli M, Bhadraiah UK, Shettar AK, Doddamani S, Ningaiah S. Novel (quinolin-8-yl-oxy)-pyrazole/thiophene derivatives: synthesis, characterization and their pharmacological evaluation. Results Chem. 2022;4:100281. doi: 10.1016/j.rechem.2021.100281.

Li X, Li F, Wang F, Li J, Lin C, Du J. Resveratrol inhibits the proliferation of A549 cells by inhibiting the expression of COX-2. Onco Targets Ther. 2018;11:2981-9. doi: 10.2147/OTT.S157613, PMID 29872310.

Pellissari CVG, Vergani CE, Longo E, Pavarina AC, Sanita PV, Siqueira WL. In vitro toxic effect of biomaterials coated with silver tungstate or silver molybdate microcrystals. Journal of Nanomaterials. 2020;2020:1-9. doi: 10.1155/2020/2971827.

Baker MA, Assis SL, Higa OZ, Costa I. Nanocomposite hydroxyapatite formation on a Ti-13Nb-13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition. Acta Biomater. 2009;5(1):63-75. doi: 10.1016/j.actbio.2008.08.008, PMID 18815081.

Zhang D, Ramachandran G, Mothana RA, Siddiqui NA, Ullah R, Almarfadi OM. Biosynthesized silver nanoparticles using Caulerpa taxifolia against A549 lung cancer cell line through cytotoxicity effect/morphological damage. Saudi J Biol Sci. 2020;27(12):3421-7. doi: 10.1016/j.sjbs.2020.09.017, PMID 33304151.

Miri A, Sarani M. Silver nanoparticles: cytotoxic and apoptotic activity on HT-29 and A549 cell lines. J New Dev Chem. 2018;1(4):1-6. doi: 10.14302/issn.2377-2549.jndc-18-2116.

Published

07-05-2024

How to Cite

K., S., SHETTAR, A. K., & S., R. (2024). BIOSYNTHESIS, CHARACTERIZATION AND EVALUATION OF SILVER NANOPARTICLES FROM THE LEAF EXTRACT OF PREMNA INTIGRIFOLIA L. AS A POTENTIAL ANTICANCER AGENT. International Journal of Applied Pharmaceutics, 16(3), 102–108. https://doi.org/10.22159/ijap.2024v16i3.50260

Issue

Section

Original Article(s)