SINUSOIDAL ELECTROMAGNETIC FIELD DECREASES OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW MESENCHYMAL STEM CELLS

Authors

  • DHIYA ALTEMEMY Department of Pharmaceutics, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq https://orcid.org/0000-0003-0311-9827
  • MARYAM HAJI GHASEM KASHANI Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences, Damghan University, Damghan, Iran
  • OSAMAH N. WENAS Department of Pharmaceutical Chemistry, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq. Osama

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50382

Keywords:

Sinusoidal electromagnetic field, Bone marrow stem cells, Runx2 and Ocn genes

Abstract

Objective: The widespread use of household electrical appliances generating electric and magnetic fields was a significant focus of WHO attention because of its serious threat to human health, especially osteogenesis. This research investigated the effect of 50 Hz frequency (1 mT intensity) sinusoidal EMF (SEMF) on the osteogenic differentiation of rat bone marrow stem cells (rBMSCs) in vitro.

Methods: Experimental groups were: positive control (cells cultured in osteogenic medium supplemented with 7-10 M Dexamethasone, negative control (cells cultured in α-MEM/10% FBS, 10 mmol Beta-Glycerol-Phosphate, 15% FBS, 50 ug/ml Ascorbic Acid bi-Phosphate, 100 unit/ml Penicillin) and for the EMF group, cells exposed to SEMF (50 Hz, 1 mT, 30 min/day) for 14 and 21 d. Alizarin red staining, Alkaline phosphatase activity, and QRT-PCR were performed.

Results: The EMF group exhibited weaker positive stains for ALP and Alizarin red than the positive control group. The Runx2 and Ocn gene expression levels were significantly decreased compared to negative control at 14 and 21 d of EMF exposure, respectively. After 14 and 21 d of exposure, Runx2 and Ocn gene expression were much lower in the EMF group than in the positive control group.

Conclusion: SEMF (1 mT, 50 Hz, 30 min/day) could retarded osteogenesis and reduce the osteogenic differentiation of rBMSCs.

Downloads

Download data is not yet available.

References

Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-28. doi: 10.1089/107632701300062859, PMID 11304456.

Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396-402. doi: 10.1182/blood.v98.8.2396, PMID 11588036.

Mohammed EEA, El-Zawahry M, Farrag ARH, Aziz NNA, Sharaf-ElDin W, Abu-Shahba N. Osteogenic differentiation potential of human bone marrow and amniotic fluid-derived mesenchymal stem cells in vitro and in vivo. Open Access Maced J Med Sci. 2019;7(4):507-15. doi: 10.3889/oamjms.2019.124, PMID 30894903.

Sun LY, Hsieh DK, Yu TC, Chiu HT, Lu SF, Luo GH. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics. 2009;30(4):251-60. doi: 10.1002/bem.20472, PMID 19204973.

Hassan HT, El-Sheemy M. Adult bone-marrow stem cells and their potential in medicine. J R Soc Med. 2004;97(10):465-71. doi: 10.1177/0141076809701003, PMID 15459256, PMCID Pmc1079613.

Jazayeri M, Shokrgozar MA, Haghighipour N, Bolouri B, Mirahmadi F, Farokhi M. Effects of electromagnetic stimulation on gene expression of mesenchymal stem cells and repair of bone lesions. Cell J. 2017;19(1):34-44. doi: 10.22074/cellj.2016.4870, PMID 28367415, PMCID PMC5241516.

Gong T, Lu L, Liu D, Liu X, Zhao K, Chen Y. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J Mater Chem B. 2015;3(46):9011-22. doi: 10.1039/c5tb01682g, PMID 32263032.

Leone L, Podda MV, Grassi C. Impact of electromagnetic fields on stem cells: common mechanisms at the crossroad between adult neurogenesis and osteogenesis. Front Cell Neurosci. 2015;9:228. doi: 10.3389/fncel.2015.00228, PMID 26124705, PMCID Pmc4466452.

Chang WH, Chen LT, Sun JS, Lin FH. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics. 2004;25(6):457-65. doi: 10.1002/bem.20016, PMID 15300732.

Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide. 2002;7(1):18-23. doi: 10.1016/s1089-8603(02)00004-6, PMID 12175815.

Zeng Q, Chiang H, Hu G, Mao G, Fu Y, Lu D. ELF magnetic fields induce internalization of gap junction protein connexin 43. In: Chinese hamster lung cells. Bioelectromagnetics: Journal of the Bioelectromagnetics Society. Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association. 2003;24(2):134-8.

Hu G, Chiang H, Zeng Q, Fu Y. ELF magnetic field inhibits gap junctional intercellular communication and induces hyperphosphorylation of connexin 43. In: NIH3T3 cells. Bioelectromagnetics: Journal of the Bioelectromagnetics Society. Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association. 2001;22(8):568-73.

Yamaguchi DT, Huang J, Ma D, Wang PK. Inhibition of gap junction intercellular communication by extremely low‐frequency electromagnetic fields in osteoblast‐like models is dependent on cell differentiation. J Cell Physiol. 2002;190(2):180-8. doi: 10.1002/jcp.10047, PMID 11807822.

Safari M, Jadidi M, Baghian A, Hasanzadeh H. Proliferation and differentiation of rat bone marrow stem cells by 400-μT electromagnetic field. Neurosci Lett. 2016;612:1-6. doi: 10.1016/j.neulet.2015.11.044, PMID 26639423.

Jansen JH, van der Jagt OP, Punt BJ, Verhaar JA, van Leeuwen JP, Weinans H. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet Disord. 2010;11(1):188. doi: 10.1186/1471-2474-11-188, PMID 20731873, PMCID PMC2936347.

Maziarz A, Kocan B, Bester M, Budzik S, Cholewa M, Ochiya T. How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Res Ther. 2016;7(1):54. doi: 10.1186/s13287-016-0312-5, PMID 27086866, PMCID Pmc4834823.

Sun LY, Hsieh DK, Lin PC, Chiu HT, Chiou TW. Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics. 2010;31(3):209-19. doi: 10.1002/bem.20550, PMID 19866474.

Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone. 2011;49(4):753-61. doi: 10.1016/j.bone.2011.06.026. PMID 21726678.

Tabatabai TS, Haji Ghasem Kashani M, Maskani R, Nasiri M, Nabavi Amri SA, Atashi A. Synergic effects of an extremely low-frequency electromagnetic field and betaine on in vitro osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. In Vitro Cell Dev Biol Animal. 2021;57(4):468-76. doi: 10.1007/s11626-021-00558-6.

Sun X, Su W, Ma X, Zhang H, Sun Z, Li X. Comparison of the osteogenic capability of rat bone mesenchymal stem cells on collagen, collagen/hydroxyapatite, hydroxyapatite and biphasic calcium phosphate. Regen Biomater. 2018;5(2):93-103. doi: 10.1093/rb/rbx018, PMID 29644091, PMCID PMC5888729.

Taghi GM, Ghasem Kashani Maryam H, Taghi L, Leili H, Leyla M. Characterization of in vitro cultured bone marrow and adipose tissue-derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biology International. 2012;36(12):1239-49. doi: 10.1042/cbi20110618, PMID 22994924.

Noviantari A, Antarianto RD. Rif’ati L, Rinendyaputri R, Zainuri M, Dany F. The expression of nestin in the induced differentiation into neurons of rat bone marrow mesenchymal stem cells by neurotrophin-3 (NT-3). Int J Appl Pharm. 2020;12:44-9.

Luo F, Hou T, Zhang Z, Xie Z, Wu X, Xu J. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics. 2012;35(4):e526-31. doi: 10.3928/01477447-20120327-11, PMID 22495854.

Esposito M, Lucariello A, Riccio I, Riccio V, Esposito V, Riccardi G. Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields. In Vivo. 2012;26(2):299-304. PMID 22351673.

Xu L, Liu Y, Sun Y, Wang B, Xiong Y, Lin W. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res Ther. 2017;8(1):275. doi: 10.1186/s13287-017-0716-x, PMID 29208029, PMCID PMC5718061.

Jaquiery C, Schaeren S, Farhadi J, Mainil Varlet P, Kunz C, Zeilhofer HF. In vitro osteogenic differentiation and in vivo bone-forming capacity of human isogenic jaw periosteal cells and bone marrow stromal cells. Ann Surg. 2005;242(6):859-67. doi: 10.1097/01.sla.0000189572.02554.2c, PMID 16327496, PMCID Pmc1409890.

Wang L, Dormer NH, Bonewald LF, Detamore MS. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng Part A. 2010;16(6):1937-48. doi: 10.1089/ten.TEA.2009.0706, PMID 20070186.

Ghali O, Broux O, Falgayrac G, Haren N, van Leeuwen JP, Penel G. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol. 2015;16(1):9. doi: 10.1186/s12860-015-0056-6, PMID 25887471, PMCID PMC4359404.

Lim K, Hexiu J, Kim J, Seonwoo H, Cho WJ, Choung PH. Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells. BioMed Res Int. 2013;2013:296019. doi: 10.1155/2013/296019, PMID 23862141, PMCID PMC3703802.

Zhong C, Zhang X, Xu Z, He R. Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Phys Ther. 2012;92(9):1208-19. doi: 10.2522/ptj.20110224, PMID 22577063.

Wu H, Ren K, Zhao W, Baojian GE, Peng S. Effect of electromagnetic fields on proliferation and differentiation of cultured mouse bone marrow mesenchymal stem cells. J Huazhong Univ Sci Technolog Med Sci. 2005;25(2):185-7. doi: 10.1007/BF02873572, PMID 16116968.

Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics. 2010;31(4):277-85. doi: 10.1002/bem.20560, PMID 20041434.

Wei Y, Xiaolin H, Tao S. Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells. Electromagn Biol Med. 2008;27(3):298-311. doi: 10.1080/15368370802289604, PMID 18821205.

Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD. Pulsed electromagnetic fields enhance BMP‐2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res. 2008;26(9):1250-5. doi: 10.1002/jor.20591, PMID 18404656.

Tsai MT, Li WJ, Tuan RS, Chang WH. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res. 2009;27(9):1169-74. doi: 10.1002/jor.20862, PMID 19274753, PMCID PMC2746855.

Yu JZ, Wu H, Yang Y, Liu CX, Liu Y, Song MY. Osteogenic differentiation of bone mesenchymal stem cells regulated by osteoblasts under EMF exposure in a co-culture system. J Huazhong Univ Sci Technolog Med Sci. 2014;34(2):247-53. doi: 10.1007/s11596-014-1266-4, PMID 24710940.

Published

07-05-2024

How to Cite

ALTEMEMY, D., GHASEM KASHANI, M. H., & N. WENAS, O. (2024). SINUSOIDAL ELECTROMAGNETIC FIELD DECREASES OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW MESENCHYMAL STEM CELLS. International Journal of Applied Pharmaceutics, 16(3), 176–181. https://doi.org/10.22159/ijap.2024v16i3.50382

Issue

Section

Original Article(s)

Most read articles by the same author(s)