DEVELOPMENT AND OPTIMIZATION OF SUPER SATURABLE SELF-NANO EMULSIFYING DRUG DELIVERY SYSTEM FOR DASATINIB BY DESIGN OF EXPERIMENT

Authors

  • C. RAJINIKANTH Department of Pharmacy, Faculty of Engineering and Technology, Annamalai University, Annamalainagar, Chidambaram 608303, Tamil Nadu, India https://orcid.org/0000-0003-0338-0937
  • K. KATHIRESAN Department of Pharmacy, FEAT, Annamalainagar, Chidambaram 608302,Tamil Nadu, India https://orcid.org/0000-0003-0338-0937

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50434

Keywords:

Dasatinib, Cancer, Central composite design, Super saturable self-nano emulsifying delivery system, Particle size

Abstract

Objective: In current research, Self-Nanoemulsifying Super Saturable Drug Delivery Systems S‑SNEDDS was formulated to attain superior drug dissolution and stability.

Methods: Using saturated solubility, capryol ® 90, cremophor®-EL, and transcutol HP were used to make S-SNEDDS. Its composition was optimized using the ternary phase diagram. Using the central composite design of Response Surface Methodology, dasatinib-SNEDDS developed responses for droplet size (Y1), polydispersity index (Y2), and % drug released in 15 min (Y3). Various Precipitation Inhibitors were added to optimize SNEDDS (S3) to make S-SNEDDS and evaluate.

Results: The optimum formulation was S3, with a particle size of 128 nm and zeta potential of-21 mV. Methylcellulose was shown better supersaturation than other inhibitors. The optimized formulation (F3) was more stable than ordinary SNEDDS due to its more significant zeta potential (-25 mV) and lower particle size (128 nm). Dasatinib was shown to be amorphous in S-SNEDDS using Differential Scanning Calorimetry and X-ray Powder Diffraction. F3 had a higher 90 min release rate (>99%) than pure drug dispersion (26%) and SNEDDS formulation (95%).

Conclusion: The results concluded that S-SNEDDS formulation successfully enhanced the dissolution and stability of dasatinib.

Downloads

Download data is not yet available.

References

Ceppi P, Papotti M, Monica V, Lo Lo Iacono M, Saviozzi S, Pautasso M. Effects of SRC kinase inhibition induced by dasatinib in non-small cell lung cancer cell lines treated with cisplatin. Mol Cancer Ther. 2009;8(11):3066-74. doi: 10.1158/1535-7163.MCT-09-0151, PMID 19861409.

Agrawal M, Garg RJ, Cortes J, Quintas Cardama A. Tyrosine kinase inhibitors: the first decade. Curr Hematol Malig Rep. 2010;5(2):70-80. doi: 10.1007/s11899-010-0045-y, PMID 20425399.

Gore L, Kearns PR, de Martino ML, Lee CADS, De Souza CA, Bertrand Y. Dasatinib in pediatric patients with chronic myeloid leukemia in chronic phase: results from a phase II trial. J Clin Oncol. 2018;36(13):1330-8. doi: 10.1200/JCO.2017.75.9597, PMID 29498925.

Wang C, Wang M, Chen P, Wang J, Le Y. Dasatinib nanoemulsion and nanocrystal for enhanced oral drug delivery. Pharmaceutics. 2022;14(1):197. doi: 10.3390/pharmaceutics14010197, PMID 35057093.

Sabra SA, Sheweita SA, Haroun M, Ragab D, Eldemellawy MA, Xia Y. Magnetically guided self-assembled protein micelles for enhanced delivery of dasatinib to human triple-negative breast cancer cells. J Pharm Sci. 2019;108(5):1713-25. doi: 10.1016/j.xphs.2018.11.044, PMID 30528944.

Muthadi RR, Kumar SG. A systematic review on supersaturable self-nano emulsifying drug delivery system: a potential strategy for drugs with poor oral bioavailability. Int J Appl Pharm. 2022;14(3):16-33.

Paranjpe M, Muller Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852-73. doi: 10.3390/ijms15045852, PMID 24717409.

Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater. 2013;2013:1-11. doi: 10.1155/2013/863951.

Widakowich C, de Castro G, de Azambuja E, Dinh P, Awada A. Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007;12(12):1443-55. doi: 10.1634/theoncologist.12-12-1443, PMID 18165622.

Byrne JD, Betancourt T, Brannon Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615-26. doi: 10.1016/j.addr.2008.08.005, PMID 18840489.

Yao Q, Choi JH, Dai Z, Wang J, Kim D, Tang X. Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl Mater Interfaces. 2017;9(42):36642-54. doi: 10.1021/acsami.7b12233, PMID 28960955.

Dong C, Li B, Li Z, Shetty S, Fu J. Dasatinib-loaded albumin nanoparticles possess diminished endothelial cell barrier disruption and retain potent anti-leukemia cell activity. Oncotarget. 2016;7(31):49699-709. doi: 10.18632/oncotarget.10435, PMID 27391073.

Moore TL, Grimes SW, Lewis RL, Alexis F. Multilayered polymer-coated carbon nanotubes to deliver dasatinib. Mol Pharm. 2014;11(1):276-82. doi: 10.1021/mp400448w, PMID 24294824.

Adena SKR, Upadhyay M, Vardhan H, Mishra B. Development, optimization, and in vitro characterization of dasatinib-loaded PEG functionalized chitosan capped gold nanoparticles using box-behnken experimental design. Drug Dev Ind Pharm. 2018;44(3):493-501. doi: 10.1080/03639045.2017.1402919, PMID 29161920.

Gossai N, Naumann J, Zamora E, Li NS, Piccirilli J, Gordon PM. Drug-DNA conjugated gold nanoparticles for the treatment of acute myeloid leukemia. Am Soc Hematol. 2015;126(23):4935.

Wei L, Sun P, Nie S, Pan W. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev Ind Pharm. 2005;31(8):785-94. doi: 10.1080/03639040500216428, PMID 16221613.

Prajwal N, Aparna J, Dipti S, Shubhangi A. Revolutionizing pharmaceuticals: a deep dive into self-nanoemulsifying drug delivery systems. Int J Curr Pharm Res. 2024;16(1):1-9.

Kasturi M, Agrawal S, Janga KY. Self nano emulsifying drug delivery system of ramipril: formulation and in vitro evaluation. Int J Pharm Pharm Sci. 2016;8(4):291-6.

Singh G, Pai RS. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Deliv. 2015;22(4):522-30. doi: 10.3109/10717544.2014.885616, PMID 24512464.

Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549-72. doi: 10.1002/jps.21650, PMID 19373886.

Jeevana JB, Sowmya M. Design of gastroretentive polymeric low-density microballoons of mebendazole using response surface methodology. Asian J Pharm Clin Res. 2022;15(7):149-59.

Hema AN, Gaayathri G, Gundeti S. Development of orodispersible tablets of loratadine containing anamorphous solid dispersion of the drug in soluplus® using design of experiments. Int J Pharm Pharm Sci. 2023;15(8):19-27.

Oyejola BA, Nwanya JC. Selecting the right central composite design. Int J Stat Appl. 2015;5(1):21-30.

Quinlan PJ, Tanvir A, Tam KC. Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils. Carbohydr Polym. 2015;133:80-9. doi: 10.1016/j.carbpol.2015.06.095, PMID 26344258.

Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443-8. doi: 10.1016/j.jcis.2008.10.077, PMID 19038395.

Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329(1-2):166-72. doi: 10.1016/j.ijpharm.2006.08.038, PMID 17010543.

Shivakumar HN, Patel PB, Desai BG, Ashok P, Arulmozhi S. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology. Acta Pharm. 2007;57(3):269-85. doi: 10.2478/v10007-007-0022-8, PMID 17878108.

Mahmoud H. Design and optimization of self-nanoemulsifying drug delivery systems of simvastatin aiming dissolution enhancement. Afr J Pharm Pharmacol. 2013;7(22):1482-500. doi: 10.5897/AJPP2013.2987.

Kallakunta VR, Bandari S, Jukanti R, Veerareddy PR. Oral self emulsifying powder of lercanidipine hydrochloride: formulation and evaluation. Powder Technol. 2012;221:375-82. doi: 10.1016/j.powtec.2012.01.032.

Tran TH, Guo Y, Song D, Bruno RS, Lu X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci. 2014;103(3):840-52. doi: 10.1002/jps.23858, PMID 24464737.

Zhang P, Liu Y, Feng N, Xu J. Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm. 2008;355(1-2):269-76. doi: 10.1016/j.ijpharm.2007.12.026, PMID 18242895.

Kollipara S, Gandhi RK. Pharmacokinetic aspects and in vitro–in vivo correlation potential for lipid-based formulations. Acta Pharm Sin B. 2014;4(5):333-49. doi: 10.1016/j.apsb.2014.09.001, PMID 26579403.

Yoo J, Baskaran R, Yoo BK. Self-nanoemulsifying drug delivery system of lutein: physicochemical properties and effect on bioavailability of warfarin. Biomolecules and Therapeutics. 2013;21(2):173-9. doi: 10.4062/biomolther.2013.011.

Yadav P, Rastogi V, Verma A. Application of box–behnken design and desirability function in the development and optimization of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe. Futur J Pharm Sci. 2020;6(1):7. doi: 10.1186/s43094-020-00023-3.

Dash RN, Mohammed H, Humaira T, Reddy AV. Solid supersaturatable self-nanoemulsifying drug delivery systems for improved dissolution, absorption and pharmacodynamic effects of glipizide. J Drug Deliv Sci Technol. 2015;28:28-36. doi: 10.1016/j.jddst.2015.05.004.

Published

07-05-2024

How to Cite

RAJINIKANTH, C., & KATHIRESAN, K. (2024). DEVELOPMENT AND OPTIMIZATION OF SUPER SATURABLE SELF-NANO EMULSIFYING DRUG DELIVERY SYSTEM FOR DASATINIB BY DESIGN OF EXPERIMENT. International Journal of Applied Pharmaceutics, 16(3), 195–205. https://doi.org/10.22159/ijap.2024v16i3.50434

Issue

Section

Original Article(s)