EFFECT OF STRUCTURAL PARAMETERS OF BRIJ SURFACTANTS ON SELF-EMULSIFICATION OF POORLY SOLUBLE DRUG
DOI:
https://doi.org/10.22159/ijap.2024v16i4.50593Keywords:
Self emulsification, Microemulsion, Zeta potential, Brij, Globule sizeAbstract
Objective: The objective of the present investigation was to optimize the excipient concentration, that is of oil, surfactant and co-surfactants to form a Self Emulsifying Drug Delivery Systems (SEDDS) using best possible combination of excipients. The present study aims to investigate the effect of homologous Brij surfactant on the self-emulsification of aceclofenac.
Methods: Three Brij surfactants Brij-35, Brij-58 and Brij-98 were selected for the study along with a common co-surfactant ethanol. The lipid carrier used was almond oil. The combinations of surfactants with ethanol were subjected to a pseudoternary diagram study.
Results: The best combination after the pseudoternary diagram study was found to be of Brij-58 and ethanol. The reason may be the difference in chains of Brij-35, Brij-58, Brij-98. The double bond of Brij-98 chain makes it rigid, whereas absence of unsaturation in Brij-58 imparts flexibility to its chain, leading to better shielding of the hydrophobic compartment when used along with ethanol. The Brij-35 chain consist of 12 carbons and Brij-58 chain consists of 16 carbons so latter offers larger core for drug solubilization. Simplex lattice design was used for optimization. Seven formulations were developed using almond oil, Brij-58, ethanol and evaluated. Formulation F2 was found to be best amongst all with globule size of 182 nm and zeta potential of-19.73 mV, indicating formation of stable microemulsion.
Conclusion: The surfactant possessing large and flexible chains along with less number of polyoxyethylene groups offers greater space for drug solubilization and better protection of the hydrophobic core and lead to finer microemulsification.
Downloads
References
Nardin I, Kollner S. Successful development of oral SEDDS: screening of excipients from the industrial point of view. Adv Drug Deliv Rev. 2019;142:128-40. doi: 10.1016/j.addr.2018.10.014, PMID 30414496.
Buya AB, Beloqui A, Memvanga PB, Preat V. Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12(12):1-52. doi: 10.3390/pharmaceutics12121194, PMID 33317067.
Mishra V, Nayak P, Yadav N, Singh M, Tambuwala MM, Aljabali AA. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin Drug Deliv. 2021;18(3):315-32. doi: 10.1080/17425247.2021.1856073, PMID 33232184.
Shaban SM, Kang J, Kim DH. Surfactants: recent advances and their applications. Compos Commun. 2020;22:100537. doi: 10.1016/j.coco.2020.100537.
Narang AS, Delmarre D, Gao D. Stable drug encapsulation in micelles and microemulsions. Int J Pharm. 2007;345(1-2):9-25. doi: 10.1016/j.ijpharm.2007.08.057, PMID 17945446.
Schulz PC, Rodriguez JL, Minardi RM, Sierra MB, Morini MA. Are the mixtures of homologous surfactants ideal? J Colloid Interface Sci. 2006;303(1):264-71. doi: 10.1016/j.jcis.2006.07.012, PMID 16887137.
Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F. Surfactant effects on lipid-based vesicles properties. J Pharm Sci. 2018;107(5):1237-46. doi: 10.1016/j.xphs.2018.01.005, PMID 29336980.
Li P, Ghosh A, Wagner RF, Krill S, Joshi YM, Serajuddin AT. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int J Pharm. 2005;288(1):27-34. doi: 10.1016/j.ijpharm.2004.08.024, PMID 15607255.
Rai R, Pandey S. Evidence of water-in-ionic liquid microemulsion formation by nonionic surfactant brij-35. Langmuir. 2014;30(34):10156-60. doi: 10.1021/la502174a, PMID 25121578.
Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. AAPS PharmSciTech. 2006;7(2):E99-E104. doi: 10.1208/pt070245.
Asfour MH, Kassem AA, Salama A, Abd El-Alim SH. Hydrophobic ion pair loaded self-emulsifying drug delivery system (SEDDS): a novel oral drug delivery approach of cromolyn sodium for management of bronchial asthma. Int J Pharm. 2020;585(May):119494. doi: 10.1016/j.ijpharm.2020.119494, PMID 32505578.
Tang J, Wang Y, Wang D, Wang Y, Xu Z, Racette K. Key structure of Brij for overcoming multidrug resistance in cancer. Biomacromolecules. 2013;14(2):424-30. doi: 10.1021/bm301661w, PMID 23311629.
Mathew R, Varkey J. Formulation and in vitro evaluation of self nano emulsifying drug delivery system of quercetin for enhancement of oral bioavailability. Int J Curr Pharm Sci. 2022;14(1):60-9. doi: 10.22159/ijcpr.2022v14i1.44113.
Pol AS, Patel PA, Hegde D. Peppermint oil-based drug delivery system of aceclofenac with improved anti-inflammatory activity and reduced Ulcerogenecity. Int J Pharma Biosci Technol. 2013;1(2);89-101.
Annisa R, Mutiah R, Yuwono M, Hendradi E. The development formulation of eleutherine palmifolia extract-loaded self-nanoemulsifying drug delivery system (Snedds) using d-optimal mixture design approach. Int J App Pharm. 2023;15(5):269-76. doi: 10.22159/ijap.2023v15i5.47645.
Yang JH, Suk KS, lee BH, Jung WC, Kang YM, Kim JH. Efficacy and safety of different aceclofenac treatments for chronic lower back pain: prospective, randomized, single-center, open-label clinical trials. Yonsei Med J. 2017;58(3):637-43.
Liu Y, Liu M, Yan H, Liu H, Liu J, Zhao Y. Enhanced solubility of bisdemethoxycurcumin by interaction with Tween surfactants: spectroscopic and coarse-grained molecular dynamics simulation studies. J Mol Liq. 2021;323:115073. doi: 10.1016/j.molliq.2020.115073.
Jianxian C, Saleem K, Ijaz M, Ur-Rehman M, Murtaza G, Asim MH. Development and in vitro evaluation of gastro-protective aceclofenac-loaded self-emulsifying drug delivery system. Int J Nanomedicine. 2020;15:5217-26. doi: 10.2147/IJN.S250242, PMID 32801687.
Vlaia L, Coneac G, Muţ AM, Olariu I, Vlaia V, Anghel DF. Topical biocompatible fluconazole-loaded microemulsions based on essential oils and sucrose esters: formulation design based on pseudo-ternary phase diagrams and physicochemical characterization. Processes. 2021;9(1):1-21. doi: 10.3390/pr9010144.
Ghosh S, Mali SN, Bhowmick DN, Pratap AP. Neem oil as a natural pesticide: pseudo ternary diagram and computational study. J Indian Chem Soc. 2021;98(7):100088. doi: 10.1016/j.jics.2021.100088.
Prajapat MD, Patel NJ, Bariya A, Patel SS, Butani SB. Formulation and evaluation of self-emulsifying drug delivery system for nimodipine, a BCS class II drug. J Drug Deliv Sci Technol. 2017;39:59-68. doi: 10.1016/j.jddst.2017.02.002.
Das SS, Singh A, Kar S, Ghosh R, Pal M, Fatima M. Application of QbD framework for the development of self-emulsifying drug delivery systems. Elsevier Inc. Pharmaceutical Quality by Design; 2019. p. 297-350. doi: 10.1016/B978-0-12-815799-2.00015-0.
Halder S, Islam A, Muhit MA, Shill MC, Haider SS. Self-emulsifying drug delivery system of black seed oil with improved hypotriglyceridemic effect and enhanced hepatoprotective function. J Funct Foods. 2021;78:104391. doi: 10.1016/j.jff.2021.104391.
Echeverry SM, Rey D, Valderrama IH, de Araujo BV, Aragon DM. Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of passiflora ligularis leaves extract. J Drug Deliv Sci Technol. 2021;64(Jan). doi: 10.1016/j.jddst.2021.102604.
Dizdarevic A, Maric M, Shahzadi I, Ari Efiana N, Matuszczak B, Bernkop-Schnürch A. Imine bond formation as a tool for incorporation of amikacin in self-emulsifying drug delivery systems (SEDDS). Eur J Pharm Biopharm. 2021 Feb;162:82-91. doi: 10.1016/j.ejpb.2021.03.001, PMID 33737147.
Zewail MB, El-Gizawy SA, Osman MA, Haggag YA. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;61:102320. doi: 10.1016/j.jddst.2021.102320.
Bennett Lenane H, Jørgensen JR, Koehl NJ, Henze LJ, O’Shea JP, Mullertz A. Exploring porcine gastric and intestinal fluids using microscopic and solubility estimates: impact of placebo self-emulsifying drug delivery system administration to inform bio-predictive in vitro tools. Eur J Pharm Sci. 2021 Feb;161:105778. doi: 10.1016/j.ejps.2021.105778, PMID 33647402.
Shewaiter MA, Hammady TM, El-Gindy A, Hammadi SH, Gad S. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. J Drug Deliv Sci Technol. 2021 Jul;61:102110. doi: 10.1016/j.jddst.2020.102110.
Mckenna BM, lyng JG. Principles of food viscosity analysis [Internet]; 2013. Instrumental assessment of food sensory quality. Woodhead Publishing limited; 2024. p. 129-62. doi: 10.1533/9780857098856.1.129.
Der Perng M, Huang YS, Quinlan RA. Purification of protein chaperones and their functional assays with intermediate filaments. Elsevier Inc. Methods in Enzymology. Vol. 569. 1st ed. 2016. p. 155-75. doi: 10.1016/bs. mie.2015.07.025.
Paul S, Panda AK. Physicochemical studies on microemulsion: effect of cosurfactant chain length on the phase behavior, formation dynamics, structural parameters and viscosity of water/(Polysorbate-20+n-Alkanol)/n-heptane water-in-oil microemulsion. J Surfactants Deterg. 2011;14(4):473-86. doi: 10.1007/s11743-011-1256-5.
Kong Y, Nikolov A, Wasan D, Ogawa A. Emulsion texture and stability: role of surfactant micellar interactions in the presence of proteins. Ind Eng Chem Res. 2008;47(23):9108-14. doi: 10.1021/ie8001815.
Ansari MJ, Alnakhli M, Al-Otaibi T, Meanazel OA, Anwer MK, Ahmed MM. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. J Drug Deliv Sci Technol. 2021;61. doi: 10.1016/j.jddst.2020.102204.
Gibaud S, Attivi D. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012;9(8):937-51. doi: 10.1517/17425247.2012.694865, PMID 22663249.
Geethanjali K, Vaiyana Rajesh C. Formulation and evaluation of self nano-emulsifying drug delivery system of ezetimibe for dissolution rate enhancement. IJRPS. 1984;11(2):1294-301. doi: 10.26452/ijrps.v11i2.1984.
El Ami, Samuel D. Optimization of rivastigmine chitosan nanoparticles for neurodegenerative alzheimer; in vitro and ex vivo characterizations. Int J Pharm Pharm Sci. 2022;14(1):17-27.
Sarkar P, Das S, Majee SB. Biphasic dissolution model: novel strategy for developing discriminatory in vivo predictive dissolution model for Bcs class Ii drugs. Int J Pharm Pharm Sci. 2022;14(4):20-7. doi: 10.22159/ijpps.2022v14i4.44042.
Banik S, Halder S, Sato H, Onoue S. Self-emulsifying drug delivery system of (R)-α-lipoic acid to improve its stability and oral absorption. Biopharm Drug Dispos. 2021;42(5):226-33. doi: 10.1002/bdd.2277, PMID 33843079.
Utami D, Meliana Y, Helmiyati BE, Budianto E. In vitro dissolution and characterization of self-emulsifying drug delivery system of artemisinin for oral delivery. J Phys: Conf Ser. 2021;1811(1). doi: 10.1088/1742-6596/1811/1/012133.
Akkus Dagdeviren ZB, Wolf JD, Kurpiers M, Shahzadi I, Steinbring C, Bernkop-Schnurch A. Charge reversal self-emulsifying drug delivery systems: a comparative study among various phosphorylated surfactants. J Colloid Interface Sci. 2021;589:532-44. doi: 10.1016/j.jcis.2021.01.025, PMID 33493863.
Cardona MI, Dominguez GP, Echeverry SM, Valderrama IH, Bernkop Schnurch A, Aragon M. Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from physalis peruviana. J Drug Deliv Sci Technol. 2021;66. doi: 10.1016/j.jddst.2021.102797.
Ribeiro ME, De Moura CL, Vieira MG, Gramosa NV, Chaibundit C, De Mattos MC. Solubilisation capacity of Brij surfactants. Int J Pharm. 2012;436(1-2):631-5. doi: 10.1016/j.ijpharm.2012.07.032, PMID 22842626.
Tomsic M, Bester Rogac M, Jamnik A, Kunz W, Touraud D, Bergmann A. Ternary systems of nonionic surfactant brij 35, water and various simple alcohols: structural investigations by small-angle X-ray scattering and dynamic light scattering. J Colloid Interface Sci. 2006;294(1):194-211. doi: 10.1016/j.jcis.2005.06.088, PMID 16085085.
Kumbhakar M, Goel T, Mukherjee T, Pal H. Role of micellar size and hydration on solvation dynamics: a temperature dependent study in triton-X-100 and Brij-35 micelles. J Phys Chem B. 2004;108(50):19246-54. doi: 10.1021/jp0468004.
Rasoanirina BN, lassoued MA, Kamoun A, Bahloul B, Miladi K, Sfar S. Voriconazole-loaded self-nanoemulsifying drug delivery system (SNEDDS) to improve transcorneal permeability. Pharm Dev Technol. 2020;25(6):694-703. doi: 10.1080/10837450.2020.1731532, PMID 32064993.
Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single-wall carbon nanotubes. Biomaterials. 2009;30(30):6041-7. doi: 10.1016/j.biomaterials.2009.07.025, PMID 19643474.
lupo N, Jalil A, Nazir I, Gust R, Bernkop Schnurch A. In vitro evaluation of intravesical mucoadhesive self-emulsifying drug delivery systems. Int J Pharm. 2019;564:180-7. doi: 10.1016/j.ijpharm.2019.04.035, PMID 30981873.
Izham MN, Hussin Y, Aziz MN, Yeap SK, Rahman HS, Masarudin MJ. Preparation and characterization of self nano-emulsifying drug delivery system loaded with citral and its antiproliferative effect on colorectal cells in vitro. Nanomaterials. 2019;9(7):1028.
Wolf JD, Kurpiers M, Gotz RX, Zaichik S, Hupfauf A, Baecker D. Phosphorylated PEG-emulsifier: a powerful tool for the development of zeta potential changing self-emulsifying drug delivery systems (SEDDS). Eur J Pharm Biopharm. 2020;150:77-86. doi: 10.1016/j.ejpb.2020.03.004, PMID 32151729.
Madan JR, Patil K, Awasthi R, Dua K. Formulation and evaluation of solid self-micro emulsifying drug delivery system for azilsartan medoxomil. Int J Polym Mater Polym Biomater. 2021;70(2):100-16. doi: 10.1080/00914037.2019.1695206.
Fan Q, Zhao R, Yi M, Qi P, Chai C, Ying H. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chem Eng J. 2022;428. doi: 10.1016/j.cej.2021.131107.
Yang F, Fu C, Lv L, Zhang F, Wang S. Self-microemulsifying delivery system of WPI-dai nanocomplex mixed with nonionic surfactant and its superiority in delivering daidzein. Food Hydrocoll. 2020;108. doi: 10.1016/j.foodhyd.2020.105952.
Kong L, Bhosale R, Ziegler GR. Encapsulation and stabilization of β-carotene by amylose inclusion complexes. Food Res Int. 2018;105:446-52. doi: 10.1016/j.foodres.2017.11.058, PMID 29433235.
Borbely S. Aggregate structure in aqueous solutions of Brij-35 nonionic surfactant studied by small-angle neutron scattering. Langmuir. 2000;16(13):5540-5. doi: 10.1021/la991265y.
Published
How to Cite
Issue
Section
Copyright (c) 2024 SHAILENDRA CHOUHAN, LALIT SINGH CHAUHAN, HEMANT KHAMBETE
This work is licensed under a Creative Commons Attribution 4.0 International License.