AN UPDATED REVIEW OF STEALTH LIPOSOMES AND ITS ABILITY TO EVADE THE IMMUNE SYSTEM: A NEW FRONTIER IN CANCER CHEMOTHERAPY

Authors

  • DURGARAMANI SIVADASAN Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia

DOI:

https://doi.org/10.22159/ijap.2024v16i3.50601

Keywords:

Liposomes, Stealth liposomes, Cancer, PEGylation, Targeted delivery, Enhanced permeation and retention effect

Abstract

Liposomes have been the delivery of choice for the cancer targeting therapy for the last few decades. Since the 1990s, the development of sterically stabilized (stealth) liposomes has garnered interest for their long circulating half-life. PEGylated (Polyethylene Glycol) liposomes are most extensively studied for delivering cancer therapeutics in a sustained manner. Stealth liposomes are having a less intrinsic toxicity with higher efficacy in cancer treatment. There are numerous clinical trials on the liposomes in tackling cancer is evident for the better outcome of the delivery system. Stealth liposomes are extensively studied for their improved circulation time and better pharmacokinetic profile in cancer treatment. The steric hindrance of the stealth liposomes bypasses the reticuloendothelial system clearance. Further the ligands conjugation in the surface of the liposomes able to achieve better target to the cancer cells. The vascularization nature of the cancerous cells is readily making the liposomal delivery of the cancer drugs accumulate in the cancerous cells rather than healthy cells. There is an utmost need to understand the possible mechanism of stealth liposomes and the basic science behind the development of liposomal delivery system in advancing the cancer treatment with less toxicity. The present review addresses the various modalities of the liposomal development, liposome characterization, mechanism of PEGylated liposomes, the advancements and results of the liposomes in the treatment of various diseases, and the clinical trials and regulatory considerations of liposomal drug delivery system.

Downloads

Download data is not yet available.

References

Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022 Feb 17;27(4):1372. doi: 10.3390/molecules27041372, PMID 35209162.

Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. J Chemother. 2004 Nov 1;16 Suppl 4:94-7. doi: 10.1179/joc.2004.16.Supplement-1.94[Suppl], PMID 15688621.

Sivadasan D, Sultan MH, Madkhali OA, Alsabei SH, Alessa AA. Stealth liposomes (pegylated) containing an anticancer drug camptothecin: in vitro characterization and in vivo pharmacokinetic and tissue distribution study. Molecules. 2022 Feb 6;27(3):1086. doi: 10.3390/molecules27031086, PMID 35164350.

Srivastava A, Yadav K, Verma NK. Liposomes for the drug delivery: a review. EAS J Pharm Pharmacol. 2021;3(5):117-32. doi: 10.36349/easjpp.2021.v03i05.003

Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, JadidiKouhbanani MA, Varma RS, Be-Heshtkhoo N. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;748:9. doi: 10.3389/fbioe.2021.705886

Wu H, Yu M, Miao Y, He S, Dai Z, Song W. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm Sin B. 2019 Jul 1;9(4):858-70. doi: 10.1016/j.apsb.2019.02.010, PMID 31384544.

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017 Mar 27;9(2):12. doi: 10.3390/pharmaceutics9020012, PMID 28346375.

Wu H, Yu M, Miao Y, He S, Dai Z, Song W. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm Sin B. 2019 Jul 1;9(4):858-70. doi: 10.1016/j.apsb.2019.02.010. PMID 31384544.

Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol. 2018 Mar 1;113:40-8. doi: 10.1016/j.fct.2018.01.017, PMID 29337230.

Kasagi N, Doi I, Nakabayashi J, Saito K, Tadakuma A, Muraki N. Optimization of dihydrosphingomyelin/cholesterol mol ratio in topotecan-loaded liposomes to enhance drug retention and plasma half-life by understanding physicochemical and thermodynamic properties of the lipid membrane. J Mol Struct. 2023 Jul 5;1283:135333. doi: 10.1016/j.molstruc.2023.135333.

Van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2022 Mar;11(5):e2100639. doi: 10.1002/adhm.202100639, PMID 34165909.

Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022 May 1;8(5):e09394. doi: 10.1016/j.heliyon.2022.e09394, PMID 35600452.

Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006 Jan 3;307(1):93-102. doi: 10.1016/j.ijpharm.2005.10.010, PMID 16303268.

Lombardo D, Kiselev MA. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022 Feb 28;14(3):543. doi: 10.3390/pharmaceutics14030543, PMID 35335920.

Rai R, Alwani S, Badea I. Polymeric nanoparticles in gene therapy: new avenues of design and optimization for delivery applications. Polymers (Basel). 2019 Apr 25;11(4):745. doi: 10.3390/polym11040745, PMID 31027272.

Chen BM, Cheng TL, Roffler SR. Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano. 2021 Sep 1;15(9):14022-48. doi: 10.1021/acsnano.1c05922, PMID 34469112.

Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66(13):6732-40. doi: 10.1158/0008-5472.CAN-05-4199, PMID 16818648.

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(A):28-51. doi: 10.1016/j.addr.2015.09.012, PMID 26456916.

Tang Y, Wang X, Li J, Nie Y, Liao G, Yu Y. Overcoming the reticuloendothelial system barrier to drug delivery with a ”don’t-eat-us” strategy. ACS Nano. 2019 Nov 5;13(11):13015-26. doi: 10.1021/acsnano.9b05679, PMID 31689086.

Weber C, Voigt M, Simon J, Danner AK, Frey H, Mailander V. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona. Biomacromolecules. 2019 Jul 3;20(8):2989-99. doi: 10.1021/acs.biomac.9b00539, PMID 31268685.

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017 Mar 27;9(2):12. doi: 10.3390/pharmaceutics9020012, PMID 28346375.

Agarwal K. Liposome assisted drug delivery-an updated review. Indian J Pharm Sci. 2022 Jul 14;84(4):797-811. doi: 10.36468/pharmaceutical-sciences.975.

Molinaro R, Wolfram J, Federico C, Cilurzo F, Di Marzio L, Ventura CA. Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opin Drug Deliv. 2013 Dec 1;10(12):1653-68. doi: 10.1517/17425247.2013.840286, PMID 24090239.

Celia C, Trapasso E, Locatelli M, Navarra M, Ventura CA, Wolfram J. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids Surf B Biointerfaces. 2013 Dec 1;112:548-53. doi: 10.1016/j.colsurfb.2013.09.017, PMID 24099646.

Wang Y, Wang J, Sun M, Zhang J, Bi Y. Coating liposomes with ringlike PEG: the synthesis and stealth effect of cho-lesterol–PEG–cholesterol. Materials Advances. 2022;3(5):2417-24.

Akbarzadeh A, Rezaei Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013 Dec;8(1):102. doi: 10.1186/1556-276X-8-102, PMID 23432972.

Wagner A, Vorauer Uhl K. Liposome technology for industrial purposes. J Drug Deliv. 2011;2011:591325. doi: 10.1155/2011/591325, PMID 21490754.

Van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2022 Mar;11(5):e2100639. doi: 10.1002/adhm.202100639, PMID 34165909.

Molinaro R, Wolfram J, Federico C, Cilurzo F, Di Marzio L, Ventura CA. Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opin Drug Deliv. 2013 Dec 1;10(12):1653-68. doi: 10.1517/17425247.2013.840286, PMID 24090239.

Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748-64. doi: 10.1039/d1nr02065j, PMID 34132312.

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021 Feb;20(2):101-24. doi: 10.1038/s41573-020-0090-8, PMID 33277608.

Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022 Feb 17;27(4):1372. doi: 10.3390/molecules27041372, PMID 35209162.

Sturm L, Poklar Ulrih N. Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. Int J Mol Sci. 2021 Jun 18;22(12):6547. doi: 10.3390/ijms22126547, PMID 34207189.

Kapoor M, Burgess DJ. Efficient and safe delivery of siRNA using anionic lipids: formulation optimization studies. International Journal of Pharmaceutics. 2012 Aug 1;432(1-2):80-90.

Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008 May;26(5):561-9. doi: 10.1038/nbt1402, PMID 18438401.

Llamas S, Guzman E, Ortega F, Rubio RG. Adsorption of mixtures of a pegylated lipid with anionic and zwitterionic surfactants at solid/liquid. Colloids Interfaces. 2020 Oct 29;4(4):47. doi: 10.3390/colloids4040047.

Saw PE, Park J, Lee E, Ahn S, Lee J, Kim H. Effect of PEG pairing on the efficiency of cancer-targeting liposomes. Theranostics. 2015;5(7):746-54. doi: 10.7150/thno.10732, PMID 25897339.

Nakamura H, Abu Lila AS, Nishio M, Tanaka M, Ando H, Kiwada H. Intra-tumor distribution of pegylated liposome upon repeated injection: no possession by prior dose. J Control Release. 2015 Dec 28;220(A):406-13. doi: 10.1016/j.jconrel.2015.11.002, PMID 26548975.

Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Be-heshtkhoo N. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:748.

Majzoub RN, Chan CL, Ewert KK, Silva BF, Liang KS, Jacovetty EL. Uptake and transfection efficiency of pegylated cationic liposome–DNA complexes with and without RGD-tagging. Biomaterials. 2014 Jun 1;35(18):4996-5005. doi: 10.1016/j.biomaterials.2014.03.007, PMID 24661552.

Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale. 2014;6(5):2782-92. doi: 10.1039/c3nr05559k, PMID 24463404.

Tang J, Kuai R, Yuan W, Drake L, Moon JJ, Schwendeman A. Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. Nanomedicine. 2017 Aug 1;13(6):1869-78. doi: 10.1016/j.nano.2017.04.009, PMID 28434931.

Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D. Diversity of pegylation methods of liposomes and their influence on RNA delivery. Med Chem Comm. 2019 Feb 12;10(3):369-77. doi: 10.1039/c8md00515j, PMID 31015904.

Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D. Diversity of pegylation methods of liposomes and their influence on RNA delivery. Med Chem Comm. 2019;10(3):369-77. doi: 10.1039/c8md00515j, PMID 31015904.

Van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2022 Mar;11(5):e2100639. doi: 10.1002/adhm.202100639, PMID 34165909.

Golkar N, Tamaddon AM, Samani SM. Effect of lipid composition on incorporation of trastuzumab-PEG-lipid into nanoliposomes by post-insertion method: physicochemical and cellular characterization. J Liposome Res. 2016 Apr 2;26(2):113-25. doi: 10.3109/08982104.2015.1048692, PMID 26023889.

Belletti D, Tosi G, Forni F, Lagreca I, Barozzi P, Pederzoli F. Pegylated siRNA lipoplexes for silencing of BLIMP-1 in primary effusion lymphoma: in vitro evidences of antitumoral activity. Eur J Pharm Biopharm. 2016 Feb 1;99:7-17. doi: 10.1016/j.ejpb.2015.11.007, PMID 26625717.

Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y. Recent progress in drug delivery. Acta Pharm Sin B. 2019 Nov 1;9(6):1145-62. doi: 10.1016/j.apsb.2019.08.003, PMID 31867161.

Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K. Protein pegylation for cancer therapy: bench to bedside. J Cell Commun Signal. 2019 Sep;13(3):319-30. doi: 10.1007/s12079-018-0492-0, PMID 30499020.

Mishra P, Nayak B, Dey RK. Pegylation in anti-cancer therapy: an overview. Asian J Pharm Sci. 2016 Jun 1;11(3):337-48. doi: 10.1016/j.ajps.2015.08.011.

Pelegri-O’Day EM, Lin EW, Maynard HD. Therapeutic protein-polymer conjugates: advancing beyond pegylation. J Am Chem Soc. 2014 Oct 15;136(41):14323-32. doi: 10.1021/ja504390x, PMID 25216406.

Wilding KM, Smith AK, Wilkerson JW, Bush DB, Knotts IV TA, Bundy BC. The locational impact of site-specific PEGylation: streamlined screening with cell-free protein expression and coarse-grain simulation. ACS Synth Biol. 2018 Feb 16;7(2):510-21. doi: 10.1021/acssynbio.7b00316, PMID 29295615.

Webber MJ, Appel EA, Vinciguerra B, Cortinas AB, Thapa LS, Jhunjhunwala S. Supramolecular PEGylation of biopharmaceuticals. Proc Natl Acad Sci USA. 2016 Dec 13;113(50):14189-94. doi: 10.1073/pnas.1616639113, PMID 27911829.

Nkanga CI, Bapolisi AM, Okafor NI, Krause RW. General perception of liposomes: formation, manufacturing and ap-plications. Liposomes Adv Perspect; 2019 Mar 26.

Gregoridis G. Entrapment of drug and other material in to liposome ”liposome technology”. 3rd ed, Vol-ll; 2007. p. 56-7.

Caponigro F, Comella P, Budillon A, Bryce J, Avallone A, De Rosa V. Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann Oncol. 2000 Mar 1;11(3):339-42. doi: 10.1023/a:1008319618638, PMID 10811502.

Du J, Lu WL, Ying X, Liu Y, Du P, Tian W. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood−brain barrier and survival of brain tumor-bearing animals. Mol Pharm. 2009 Jun 1;6(3):905-17. doi: 10.1021/mp800218q, PMID 19344115.

Kanásova M, Nesmerak K. Systematic review of liposomes’ characterization methods. Monatsh Chem. 2017 Sep;148(9):1581-93. doi: 10.1007/s00706-017-1994-9.

Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: an overview. J Drug Deliv Sci Technol. 2020 Apr 1;56:101549. doi: 10.1016/j.jddst.2020.101549.

Silindir Gunay M, Karpuz M, Ozturk N, Yekta Ozer AY, Erdogan S, Tuncel M. Radiolabeled, folate-conjugated liposomes as tumor imaging agents: formulation and in vitro evaluation. J Drug Deliv Sci Technol. 2019 Apr 1;50:321-8. doi: 10.1016/j.jddst.2019.02.003.

Saraswat AL, Maher TJ. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin. J Drug Deliv Sci Technol. 2020 Feb 1;55:101477. doi: 10.1016/j.jddst.2019.101477.

Vijayakumar MR, Kosuru R, Vuddanda PR, Singh SK, Singh S. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: an evidence for prolonged systemic circulation and passive brain targeting. J Drug Deliv Sci Technol. 2016 Jun 1;33:125-35. doi: 10.1016/j.jddst.2016.02.009.

Choi JS, Park JW, Seu YB, Doh KO. Enhanced efficacy of folate-incorporated cholesteryl doxorubicin liposome in folate receptor abundant cancer cell. J Drug Deliv Sci Technol. 2021 Apr 1;62:102385. doi: 10.1016/j.jddst.2021.102385.

Nandi U, Onyesom I, Douroumis D. Transferrin conjugated stealth liposomes for sirolimus active targeting in breast cancer. J Drug Deliv Sci Technol. 2021 Dec 1;66:102900. doi: 10.1016/j.jddst.2021.102900.

Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297-315. PMID 17717971.

Kibria G, Hatakeyama H, Sato Y, Harashima H. Anti-tumor effect via passive anti-angiogenesis of pegylated liposomes encapsulating doxorubicin in drug resistant tumors. Int J Pharm. 2016 Jul 25;509(1-2):178-87. doi: 10.1016/j.ijpharm.2016.05.047, PMID 27234700.

Rip J, Chen L, Hartman R, van den Heuvel A, Reijerkerk A, van Kregten J. Glutathione pegylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats. J Drug Target. 2014 Jun 1;22(5):460-7. doi: 10.3109/1061186X.2014.888070, PMID 24524555.

Gaillard PJ, Appeldoorn CC, Dorland R, Van Kregten J, Manca F, Vugts DJ. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLOS ONE. 2014 Jan 8;9(1):e82331. doi: 10.1371/journal.pone.0082331, PMID 24416140.

Chou H, Lin H, Liu JM. A tale of the two pegylated liposomal doxorubicins. Onco Targets Ther. 2015 Jul 13;8:1719-20. doi: 10.2147/OTT.S79089, PMID 26203262.

Passero Jr FC, Grapsa D, Syrigos KN, Saif MW. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev Anticancer Ther. 2016 Jul 2;16(7):697-703. doi: 10.1080/14737140.2016.1192471, PMID 27219482.

Alaaeldin E, Abu Lila AS, Ando H, Fukushima M, Huang CL, Wada H. Co-administration of liposomal l-OHP and pegylated TS shRNA-lipoplex: a novel approach to enhance anti-tumor efficacy and reduce the immunogenic response to RNAi molecules. J Control Release. 2017 Jun 10;255:210-7. doi: 10.1016/j.jconrel.2017.04.040, PMID 28461099.

Petersen AL, Henriksen JR, Binderup T, Elema DR, Rasmussen PH, Hag AM. In vivo evaluation of PEGylated ⁶⁴Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging. 2016 May;43(5):941-52. doi: 10.1007/s00259-015-3272-6, PMID 26646780.

Gaillard PJ, Appeldoorn CC, Dorland R, Van Kregten J, Manca F, Vugts DJ. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLOS ONE. 2014 Jan 8;9(1):e82331. doi: 10.1371/journal.pone.0082331, PMID 24416140.

Mohamed M, Alaaeldin E, Hussein A, Sarhan H. Liposomes and PEGylated liposomes as drug delivery system. Journal of Advanced Biomedical and Pharmaceutical Sciences. 2020;14:51. doi: 10.21608/jabps.2020.22937.1068.

Birngruber T, Raml R, Gladdines W, Gatschelhofer C, Gander E, Ghosh A. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,(®)/Doxil(®)-a cerebral open flow microperfusion pilot study. J Pharm Sci. 2014 Jul 1;103(7):1945-8. doi: 10.1002/jps.23994, PMID 24801480.

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017 Mar 27;9(2):12. doi: 10.3390/pharmaceutics9020012, PMID 28346375.

Dragovich T, Mendelson D, Hoos A, Lewis J, Kurtin S, Richardson K. 268 A phase II trial of aroplatin (L-NDDP), a liposomal DACH platinum, in patients with metastatic colorectal cancer (CRC)-a preliminary report. European Journal of Cancer Supplements. 2003;1(5):S82-3. doi: 10.1016/S1359-6349(03)90301-6.

Zamboni WC, Strychor S, Joseph E, Walsh DR, Zamboni BA, Parise RA. Plasma, tumor, and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts. Clin Cancer Res. 2007 Dec 1;13(23):7217-23. doi: 10.1158/1078-0432.CCR-07-1035, PMID 18056203.

Caraglia M, Luongo L, Salzano G, Zappavigna S, Marra M, Guida F. Stealth liposomes encapsulating zoledronic acid: a new opportunity to treat neuropathic pain. Mol Pharm. 2013 Mar 4;10(3):1111-8. doi: 10.1021/mp3006215, PMID 23327778.

Kommineni N, Paul D, Saka R, Khan W, Nanjappan S. Stealth liposomal chemotherapeutic agent for triple negative breast cancer with improved pharmacokinetics. Nanotheranostics. 2022 Aug 21;6(4):424-35. doi: 10.7150/ntno.76370, PMID 36051857.

Sivadasan D, Sultan MH, Madkhali OA, Alsabei SH, Alessa AA. Stealth liposomes (pegylated) containing an anticancer drug camptothecin: in vitro characterization and in vivo pharmacokinetic and tissue distribution study. Molecules. 2022 Feb 6;27(3):1086. doi: 10.3390/molecules27031086, PMID 35164350.

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021 Jun 28;15(11):16982-7015. doi: 10.1021/acsnano.1c04996, PMID 34181394.

Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol. 2005 Apr;83(2):97-105. doi: 10.1111/j.1440-1711.2005.01315.x, PMID 15748206.

Kester KE, Cummings JF, Ofori Anyinam O, Ockenhouse CF, Krzych U, Moris P. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J Infect Dis. 2009 Aug 1;200(3):337-46. doi: 10.1086/600120, PMID 19569965.

van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA. A novel liposomal adjuvant system, CAF01, promotes long-lived mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014 Dec 12;32(52):7098-107. doi: 10.1016/j.vaccine.2014.10.036, PMID 25454872.

Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018 Jul 1;171:207-18. doi: 10.1016/j.biomaterials.2018.04.031, PMID 29704747.

Lee W, Jung KH, Park JA, Kim JY, Lee YJ, Chang Y. In vivo evaluation of pegylated-liposome encapsulating gadolinium complexes for gadolinium neutron capture therapy. Biochem Biophys Res Commun. 2021 Sep 3;568:23-9. doi: 10.1016/j.bbrc.2021.06.045, PMID 34174538.

Goodwin PJ. Flashback foreword: anti-HER2 monoclonal antibody as a single agent. J Clin Oncol. 2023 Mar 10;41(8):1499-500. doi: 10.1200/JCO.22.02679, PMID 36881997.

Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008 Jan 15;41(1):120-9. doi: 10.1021/ar7000815, PMID 17655275.

Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm. 2009 May 21;373(1-2):116-23. doi: 10.1016/j.ijpharm.2009.01.023, PMID 19429296.

Mukherjee A, Prasad TK, Rao NM, Banerjee R. Haloperidol-associated stealth liposomes: a potent carrier for delivering genes to human breast cancer cells. J Biol Chem. 2005 Apr 22;280(16):15619-27. doi: 10.1074/jbc.M409723200, PMID 15695518.

Lee TY, Wu HC, Tseng YL, Lin CT. A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer Res. 2004 Nov 1;64(21):8002-8. doi: 10.1158/0008-5472.CAN-04-1948, PMID 15520208.

Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016 Nov 21;23(9):3319-29. doi: 10.1080/10717544.2016.1177136, PMID 27145899.

Barenholz YC. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release. 2012 Jun 10;160(2):117-34. doi: 10.1016/j.jconrel.2012.03.020, PMID 22484195.

Andriyanov AV, Portnoy E, Koren E, Inesa S, Eyal S, Goldberg SN. Therapeutic efficacy of combined pegylated liposomal doxorubicin and radiofrequency ablation: comparing single and combined therapy in young and old mice. J Control Release. 2017 Jul 10;257:2-9. doi: 10.1016/j.jconrel.2017.02.018, PMID 28215670.

Buyens K, De Smedt SC, Braeckmans K, Demeester J, Peeters L, van Grunsven LA. Liposome based systems for systemic SiRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release. 2012 Mar 28;158(3):362-70. doi: 10.1016/j.jconrel.2011.10.009, PMID 22023849.

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330, PMID 26348965.

La-Beck NM, Gabizon AA. Nanoparticle interactions with the immune system: clinical implications for liposome-based cancer chemotherapy. Front Immunol. 2017 Apr 6;8:416. doi: 10.3389/fimmu.2017.00416, PMID 28428790.

Nakamura H, Doi Y, Abu Lila AS, Nagao A, Ishida T, Kiwada H. Sequential treatment of oxaliplatin-containing PEGylated liposome together with S-1 improves intratumor distribution of subsequent doses of oxaliplatin-containing PEGylated liposome. Eur J Pharm Biopharm. 2014 May 1;87(1):142-51. doi: 10.1016/j.ejpb.2013.12.007, PMID 24361534.

Petersen AL, Henriksen JR, Binderup T, Elema DR, Rasmussen PH, Hag AM. In vivo evaluation of PEGylated ⁶⁴Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging. 2016;43(5):941-52. doi: 10.1007/s00259-015-3272-6, PMID 26646780.

La-Beck NM, Zamboni BA, Gabizon A, Schmeeda H, Amantea M, Gehrig PA. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother Pharmacol. 2012 Jan;69(1):43-50. doi: 10.1007/s00280-011-1664-2, PMID 21590446.

Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003 Nov 1;42(6):463-78. doi: 10.1016/s0163-7827(03)00033-x, PMID 14559067.

Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81-9. doi: 10.7150/thno.7193, PMID 24396516.

Nakamura H, Abu Lila AS, Nishio M, Tanaka M, Ando H, Kiwada H. Intra-tumor distribution of pegylated liposome upon repeated injection: no possession by prior dose. J Control Release. 2015 Dec 28;220(A):406-13. doi: 10.1016/j.jconrel.2015.11.002, PMID 26548975.

Poornima K, Puri A, Gupta A. Understanding the stealth properties of PEGylated lipids: a mini-review. IJL. 2020;1(2):1-20. doi: 10.14302/issn.2835-513X.ijl-20-3457.

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017 Mar 27;9(2):12. doi: 10.3390/pharmaceutics9020012, PMID 28346375.

Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V. Nanomedicines accessible in the market for clinical interventions. J Control Release. 2021 Feb 10;330:372-97. doi: 10.1016/j.jconrel.2020.12.034, PMID 33370576.

Q8(R2) Pharmaceutical Development. Available from: https://www.ich.org/page/quality-guidelines. [Last accessed on 20 Jun 2021]

Delma KL, Lechanteur A, Evrard B, Semde R, Piel G. Sterilization methods of liposomes: drawbacks of conventional methods and perspectives. Int J Pharm. 2021 Mar 15;597:120271. doi: 10.1016/j.ijpharm.2021.120271, PMID 33548365.

He H, Jiang S, Xie Y, Lu Y, Qi J, Dong X. Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horiz. 2018;3(4):397-407. doi: 10.1039/c8nh00010g, PMID 32254127.

Guideline for the nonclinical pharmacokinetics of nanomedicines. Available from: http://www.cde.org.cn/zdyz.do?method=largePageandid=1be98aec2c8f7a72. [Last accessed on 25 Jun 2021]

Hu X, Dong X, Lu Y, Qi J, Zhao W, Wu W. Bioimaging of nanoparticles: the crucial role of discriminating nanoparticles from free probes. Drug Discov Today. 2017 Feb 1;22(2):382-7. doi: 10.1016/j.drudis.2016.10.002, PMID 27742534.

Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev. 2019 Mar 15;143:206-25. doi: 10.1016/j.addr.2019.05.009, PMID 31158405.

Xia F, Chen Z, Zhu Q, Qi J, Dong X, Zhao W. Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route. Acta Pharm Sin B. 2021 Apr 1;11(4):1010-20. doi: 10.1016/j.apsb.2021.03.006, PMID 33996413.

He H, Wang L, Ma Y, Yang Y, Lv Y, Zhang Z. The biological fate of orally administered mPEG-PDLLA polymeric micelles. J Control Release. 2020 Nov 10;327:725-36. doi: 10.1016/j.jconrel.2020.09.024, PMID 32946874.

Li Y, Wang C, Zong S, Qi J, Dong X, Zhao W. The trigeminal pathway dominates the nose-to-brain transportation of intact polymeric nanoparticles: evidence from aggregation-caused quenching probes. J Biomed Nanotechnol. 2019 Apr 1;15(4):686-702. doi: 10.1166/jbn.2019.2724, PMID 30841963.

He H, Xie Y, Lv Y, Qi J, Dong X, Zhao W. Bioimaging of intact polycaprolactone nanoparticles using aggregation‐caused quenching probes: size‐dependent translocation via oral delivery. Adv Healthc Mater. 2018 Nov;7(22):e1800711. doi: 10.1002/adhm.201800711, PMID 30345713.

Kumar P, Huo P, Liu B. Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics. 2019 Aug 2;11(8). doi: 10.3390/pharmaceutics11080381, PMID 31382369:381.

Kumar P, Huo P, Liu B. Formulation strategies for folate-targeted liposomes and their biomedical applications. Pharmaceutics. 2019;11(8). doi: 10.3390/pharmaceutics11080381, PMID 31382369.

Bangale GS, Rajesh KS, Shinde GV. Stealth liposomes: a novel approach of targeted drug delivery in cancer therapy. Int J Pharm Sci Res. 2014;5:750-9.

Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020 Apr 2;181(1):151-67. doi: 10.1016/j.cell.2020.02.001, PMID 32243788.

Khan YY, Suvarna V. Liposomes containing phytochemicals for cancer treatment-an update. Int J Curr Pharm Sci 2017;9(1). doi: 10.22159/ijcpr.2017v9i1.16629.

Iden DL, Allen TM. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochim Biophys Acta. 2001 Aug 6;1513(2):207-16. doi: 10.1016/s0005-2736(01)00357-1, PMID 11470092.

Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle pegylation for imaging and therapy. Nanomedicine (Lond). 2011 Jun;6(4):715-28. doi: 10.2217/nnm.11.19, PMID 21718180.

Fundaro A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res. 2000 Oct 1;42(4):337-43. doi: 10.1006/phrs.2000.0695, PMID 10987994.

Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev. 2019;143:134-60. doi: 10.1016/j.addr.2019.05.012, PMID 31170428.

Princely S, Dhanaraju MD. Design, formulation, and characterization of liposomal-encapsulated gel for transdermal delivery of fluconazole. Asian J Pharm Clin Res. 2018 Aug 8;11:417-24. doi: 10.22159/ajpcr.2018.v11i8.25621.

Singh D, Pahwa S. A review on physico-chemical parameters of liposomal doxorubicin. Int J App Pharm. 2019 Dec 12;2:1-5. doi: 10.22159/ijap.2020v12i2.35330.

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021 Jun 28;15(11):16982-7015. doi: 10.1021/acsnano.1c04996, PMID 34181394.

Kusuma P, Vinod K, Damini VKK. Somes: a review on composition, formulation methods and evaluations of different types of ”somes” drug delivery system. Int J App Pharm 2020;12(6):7-18. doi: 10.22159/ijap.2020v12i6.38996.

Published

07-05-2024

How to Cite

SIVADASAN, D. (2024). AN UPDATED REVIEW OF STEALTH LIPOSOMES AND ITS ABILITY TO EVADE THE IMMUNE SYSTEM: A NEW FRONTIER IN CANCER CHEMOTHERAPY. International Journal of Applied Pharmaceutics, 16(3), 22–36. https://doi.org/10.22159/ijap.2024v16i3.50601

Issue

Section

Review Article(s)