PEPTIDE DELIVERY VIA NASAL ROUTE: EXPLORING RECENT DEVELOPMENTS AND APPROACHES

Authors

  • CHAITALI PALDE Parul Institute of Pharmacy and Research, Faculty of Pharmacy, Parul University, Vadodara, India https://orcid.org/0009-0001-1742-2686
  • TULARAM BAROT Parul Institute of Pharmacy and Research, Faculty of Pharmacy, Parul University, Vadodara, India
  • G. S. CHAKRABORTHY Parul Institute of Pharmacy and Research, Faculty of Pharmacy, Parul University, Vadodara, India https://orcid.org/0000-0003-0637-0486
  • L. D. PATEL Faculty of Pharmacy, Parul University, Vadodara, India

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50626

Keywords:

Peptide, Nasal drug delivery, Nanocarriers, Mucoadhesive, Insulin, Intravail®

Abstract

There has been a significant increase in interest in using the nasal route to administer peptides. This is mainly due to its advantages, including less invasiveness, rapid absorption, and the ability to bypass initial metabolism in the liver. The incorporation of nanotechnology has emerged as a prominent strategy, with nanocarriers such as nanoparticles and liposomes being employed to augment stability and bioavailability of peptides, as extensively discussed in this review. These carriers serve the crucial function of safeguarding peptides against enzymatic degradation while also enabling a sustained release, thus extending the therapeutic impact. Additionally, this review delves into mucoadhesive polymers and permeation enhancers, which have undergone extensive exploration to enhance nasal retention and augment the transportation of peptides across the nasal mucosa. Recent breakthroughs in nasal peptide delivery have heralded a new era in peptide-based therapies. These advancements encompass innovative formulation technologies, the utilization of nanocarriers, permeation enhancers, and the integration of intelligent materials and nasal drug delivery devices, all of which are geared towards enhancing the efficiency and efficacy of nasal peptide delivery.

Downloads

Download data is not yet available.

References

Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700-7. doi: 10.1016/j.bmc.2017.06.052, PMID 28720325.

Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. FDA TIDES (peptides and oligonucleotides) harvest. Pharmaceuticals. 2022;16(3):336.

Borrajo ML, Alonso MJ. Using nanotechnology to deliver biomolecules from nose to brain-peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res. 2022;12(4):862-80. doi: 10.1007/s13346-021-01086-2, PMID 34731414.

Kamei N, Shingaki T, Kanayama Y, Tanaka M, Zochi R, Hasegawa K. Visualization and quantitative assessment of the brain distribution of insulin through nose-to-brain delivery based on the cell-penetrating peptide noncovalent strategy. Mol Pharm. 2016;13(3):1004-11. doi: 10.1021/acs.molpharmaceut.5b00854, PMID 26795701.

Kamei N, Takeda Morishita M. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J Control Release. 2015;197:105-10. doi: 10.1016/j.jconrel.2014.11.004, PMID 25445695.

Carter GG, Wilkinson GS. Intranasal oxytocin increases social grooming and food sharing in the common vampire bat Desmodus rotundus. Horm Behav. 2015;75:150-3. doi: 10.1016/j.yhbeh.2015.10.006, PMID 26475061.

Kent P, Awadia A, Zhao L, Ensan D, Silva D, Cayer C. Effects of intranasal and peripheral oxytocin or gastrin-releasing peptide administration on social interaction and corticosterone levels in rats. Psychoneuroendocrinology. 2016;64:123-30. doi: 10.1016/j.psyneuen.2015.11.019, PMID 26658172.

Fletcher L, Kohli S, Sprague SM, Scranton RA, lipton SA, Parra A. Intranasal delivery of erythropoietin plus insulin-like growth factor–I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg. 2009;111(1):164-70. doi: 10.3171/2009.2.JNS081199, PMID 19284235.

Alcala Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target. 2010;18(3):179-90. doi: 10.3109/10611860903318134, PMID 19807216.

Kaur KI, Kaur RA, Kaur MA. Recent advances in Alzheimer’s disease: causes and treatment. Int J Pharm Pharm Sci. 2016 Feb;8(2):8-15.

Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A. Development of a non-invasive NGF-based therapy for Alzheimer’s disease. Curr Alzheimer Res. 2009;6(2):158-70. doi: 10.2174/156720509787602870, PMID 19355851.

Gartziandia O, Herran E, Pedraz JL, Carro E, Igartua M, Hernandez RM. Chitosan-coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces. 2015;134:304-13. doi: 10.1016/j.colsurfb.2015.06.054, PMID 26209963.

Chauhan MB, Chauhan NB. Brain uptake of neurotherapeutics after intranasal versus intraperitoneal delivery in mice. J Neurol Neurosurg. 2015;2(1):9. PMID 26366437.

During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9(9):1173-9. doi: 10.1038/nm919, PMID 12925848.

Yu H, Kim K. Direct nose-to-brain transfer of a growth hormone releasing neuropeptide, hexarelin after intranasal administration to rabbits. Int J Pharm. 2009;378(1-2):73-9. doi: 10.1016/j.ijpharm.2009.05.057, PMID 19501141.

Khafagy ES, Morishita M, Kamei N, Eda Y, Ikeno Y, Takayama K. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins. Int J Pharm. 2009;381(1):49-55. doi: 10.1016/j.ijpharm.2009.07.022, PMID 19646515.

Sasaki Hamada S, Nakamura R, Nakao Y, Akimoto T, Sanai E, Nagai M. Antidepressant-like effects exerted by the intranasal administration of a glucagon-like peptide-2 derivative containing cell-penetrating peptides and a penetration-accelerating sequence in mice. Peptides. 2017;87:64-70. doi: 10.1016/j.peptides.2016.11.013, PMID 27894924.

Hanson LR, Fine JM, Hoekman JD, Nguyen TM, Burns RB, Martinez PM. Intranasal delivery of growth differentiation factor 5 to the central nervous system. Drug Deliv. 2012;19(3):149-54. doi: 10.3109/10717544.2012.657720, PMID 22353012.

Zhang H, Meng J, Zhou S, liu Y, Qu D, Wang L. Intranasal delivery of exendin-4 confers neuroprotective effect against cerebral ischemia in mice. AAPS J. 2016;18(2):385-94. doi: 10.1208/s12248-015-9854-1, PMID 26689204.

Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabban EL. Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol. 2014;24(1):142-7. doi: 10.1016/j.euroneuro.2013.11.007, PMID 24326087.

Thwala LN, Preat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017;14(1):23-36. doi: 10.1080/17425247.2016.1206074, PMID 27351299.

Kabanov AV, Batrakova EV. New technologies for drug delivery across the blood-brain barrier. Curr Pharm Des. 2004;10(12):1355-63. doi: 10.2174/1381612043384826, PMID 15134486.

Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189-200. doi: 10.1016/j.jconrel.2014.05.003, PMID 24818769.

Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1-2):1-24. doi: 10.1016/j.ijpharm.2007.03.025, PMID 17475423.

Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol. 1998;274(1):F1-9. doi: 10.1152/ajprenal.1998.274.1.F1, PMID 9458817.

Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal peptide therapeutics: a promising avenue for overcoming the challenges of traditional CNS drug development. Cells. 2022;11(22):3629. doi: 10.3390/cells11223629, PMID 36429060.

Lochhead JJ, Davis TP. Perivascular and perineural pathways involved in brain delivery and distribution of drugs after intranasal administration. Pharmaceutics. 2019;11(11):598-608. doi: 10.3390/pharmaceutics11110598, PMID 31726721.

Rathbone MJ, Hadgraft J, Roberts MS. editors. Modified-release drug delivery technology. Boca Raton: CRC Press; 2002.

Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14(9):3754-79. doi: 10.3390/molecules14093754, PMID 19783956.

Maggio ET. Intravail: highly effective intranasal delivery of peptide and protein drugs. Expert Opin Drug Deliv. 2006;3(4):529-39. doi: 10.1517/17425247.3.4.529, PMID 16822227.

Ahsan F, Arnold J, Meezan E, Pillion DJ. Enhanced bioavailability of calcitonin formulated with alkyl glycosides following nasal and ocular administration in rats. Pharm Res. 2001;18(12):1742-6. doi: 10.1023/a:1013330815253, PMID 11785695.

Shao J. Nasal delivery of proteins and peptides. GJPPS. 2017;1(4). doi: 10.19080/GJPPS.2017.01.555569.

Agersø H, Seiding larsen l, Riis A, lovgren U, Karlsson MO, Senderovitz T. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br J Clin Pharmacol. 2004;58(4):352-8.

Suzuki R, Brown GA, Christopher JA, Scully CC, Congreve M. Recent developments in therapeutic peptides for the glucagon-like peptide 1 and 2 receptors. J Med Chem. 2020;63(3):905-27. doi: 10.1021/acs.jmedchem.9b00835, PMID 31577440.

Kim GY, Kim JH, lee T, Bae BC, Baik H, Kim T, Kim J, Kang DW, Kim JH, Kim D, Cho HY. In vitro and in vivo evaluations of a 3 mo sustained-release microsphere depot formulation of leuprolide acetate. J Pharm Investig. 2022;52(1):129-38.

Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E. Rational development of lEA29Y (Belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5(3):443-53. doi: 10.1111/j.1600-6143.2005.00749.x, PMID 15707398.

Booth C, Gaspar HB. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics. 2009;3:349-58. PMID 19707420.

Al-Tabakha MM. Future prospect of insulin inhalation for diabetic patients: the case of Afrezza versus Exubera. J Control Release. 2015;215:25-38. doi: 10.1016/j.jconrel.2015.07.025, PMID 26222134.

Krishnarajan D, Tamilselvan A, Abraham S, Mathew RJ, Ramya S, Raja KR. New approaches of nasal drug delivery system. Pharmacophore. 2016;7(4):242-64.

Mittal S, Jobin J, Kawale S. Review on nasal drug delivery system. World J Pharm Sci. 2014;2(9):1058-70.

Jadhav KR, Gambhire MN, Shaikh IM, Kadam VJ, Pisal SS. Nasal drug delivery system-factors affecting and applications. Curr Drug Ther. 2007;2(1):27-38. doi: 10.2174/157488507779422374.

Morimoto K, Miyazaki M, Kakemi M. Effects of proteolytic enzyme inhibitors on nasal absorption of salmon calcitonin in rats. International Journal of Pharmaceutics. 1995;113(1):1-8. doi: 10.1016/0378-5173(94)00158-2.

Jain NK. Controlled and novel drug delivery. 1st ed. New Delhi: CBS Publisher; 2012.

Pisal DS, Kosloski MP, Balu Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557-75. doi: 10.1002/jps.22054, PMID 20049941.

Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951-67. doi: 10.1038/s41551-021-00698-w, PMID 33795852.

Ghori MU, Mahdi MH, Smith AM, Conway BR. Nasal drug delivery systems: an overview. Am J Pharmacol Sci. 2015;3(5):110-9.

Yadav AR, Mohite SK. Recent advances in protein and peptide drug delivery. Rese Jour Pharmaceut Dosag Form and Technol. 2020;12(3):205-12. doi: 10.5958/0975-4377.2020.00035.X.

Fordtran JS, Hofmann AF. Seventy years of polyethylene glycols in gastroenterology: the journey of PEG 4000 and 3350 from nonabsorbable marker to colonoscopy preparation to osmotic laxative. Gastroenterology. 2017;152(4):675-80. doi: 10.1053/j.gastro.2017.01.027, PMID 28147222.

Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: specially insulin and calcitonin. Eur J Pharm Sci. 2024;192:106630. doi: 10.1016/j.ejps.2023.106630, PMID 37949195.

Alabsi W, Eedara BB, Encinas Basurto D, Polt R, Mansour HM. Nose-to-brain delivery of therapeutic peptides as nasal aerosols. Pharmaceutics. 2022;14(9):1870. doi: 10.3390/pharmaceutics14091870, PMID 36145618.

Gerbutaviciene R, Klimas R, Savickas A, Maciulevicius J. Development of formulations of desmopressin intranasal drops. Medicina (Kaunas). 2002;38(5):545-9. PMID 12474688.

Majcher MJ, Babar A, lofts A, leung A, li X, Abu-Hijleh F, Smeets NM, Mishra RK, Hoare T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Controlled Release. 2021;330:738-52.

Callens C, Remon JP. Evaluation of starch-maltodextrin-carbopol 974 P mixtures for the nasal delivery of insulin in rabbits. J Control Release. 2000;66(2-3):215-20. doi: 10.1016/s0168-3659(99)00271-0, PMID 10742581.

Matsumoto T, Shiraki M, Hagino H, Iinuma H, Nakamura T. Daily nasal spray of hPTH(1-34) for 3 mo increases bone mass in osteoporotic subjects: a pilot study. Osteoporos Int. 2006;17(10):1532-8. doi: 10.1007/s00198-006-0159-1, PMID 16767525.

Drugs@FDA. FDA-approved drugs; c2024. Available from: https://www.accessdata.fda.gov/ [Last accessed on 14 Mar 2024]

Bajracharya R, Song JG, Back SY, Han HK. Recent advancements in non-invasive formulations for protein drug delivery. Comput Struct Biotechnol J. 2019;17:1290-308. doi: 10.1016/j.csbj.2019.09.004, PMID 31921395.

Warnken Z, Kim YJ, Mansour HM, Williams RO, Smyth HDC. Inhalation aerosols. 3rd ed Bloca Raton. FL: CRC Press; 2019.

Agrawal M, Konwar AN, Alexander A, Borse V. Nose-to-brain delivery of biologics and stem cells. Cambridge: Academic Press; 2021.

Rohrer J, lupo N, Bernkop Schnürch A. Advanced formulations for intranasal delivery of biologics. Int J Pharm. 2018;553(1-2):8-20. doi: 10.1016/j.ijpharm.2018.10.029, PMID 30316796.

RxList. Nascobal (cyanocobalamin): uses, dosage, side effects, interactions, warning; c2024. Available https://www.rxlist.com/nascobal-drug.htm [Last accessed on 14 Mar 2024]

Vyas SP, Khar RK. Targeted and controlled drug delivery: novel carrier systems. 1st ed. New Delhi: CBS Publisher; 2010.

Chien YW. Nasal drug delivery and delivery systems, novel drug delivery systems. Boca Raton: CRC Press; 1991.

Zheng X, Shao X, Zhang C, Tan Y, liu Q, Wan X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res. 2015;32(12):3837-49. doi: 10.1007/s11095-015-1744-9, PMID 26113236.

Varshosaz J, Sadrai H, Alinagari R. Nasal delivery of insulin using chitosan microspheres. J Microencapsul. 2004;21(7):761-74. doi: 10.1080/02652040400015403, PMID 15799226.

Bjork E, Edman P. Characterization of degradable starch microspheres as a nasal delivery system for drugs. International Journal of Pharmaceutics. 1990;62(2-3):187-92. doi: 10.1016/0378-5173(90)90232-S.

Mohammed GK, Obaidat RM, Assaf S, Khanfar M, Al-Taani BA. Formulations and technologies in growth hormone delivery. Int J Pharm Pharm Sci. 2017;9(7):1-2. doi: 10.22159/ijpps.2017.v9i7.18079.

Dlugi AM, Miller JD, Knittle J. Lupron depot (leuprolide acetate for depot suspension) in the treatment of endometriosis: a randomized, placebo-controlled, double-blind study. Lupron Study Group Fertil Steril. 1990;54(3):419-27. doi: 10.1016/s0015-0282(16)53755-8, PMID 2118858.

Von Mentzer B, Russo AF, Zhang Z, Kuburas A, Killoran PM, D’Aloisio V. A CGRP receptor antagonist peptide formulated for nasal administration to treat migraine. J Pharm Pharmacol. 2020;72(10):1352-60. doi: 10.1111/jphp.13317, PMID 32588458.

Tengamnuay P, Mitra AK. Bile salt-fatty acid mixed micelles as nasal absorption promoters of peptides. I. Effects of ionic strength, adjuvant composition, and lipid structure on the nasal absorption of [D-Arg2]kyotorphin. Pharm Res. 1990;7(2):127-33. doi: 10.1023/a:1015868516602, PMID 2308892.

Slomkowski S, Gosecki M. Progress in nanoparticulate systems for peptide, proteins and nucleic acid drug delivery. Curr Pharm Biotechnol. 2011;12(11):1823-39. doi: 10.2174/138920111798377003, PMID 21902630.

Banerjee A, Onyuksel H. Peptide delivery using phospholipid micelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(5):562-74. doi: 10.1002/wnan.1185, PMID 22847908.

Roshani AS, Shrikant DP, Nikita J, Dipti P, Tusharkumar I. A review on: drug delivery through nasal route. Int J Creat Res Thoughts. 2023;11(3):889-915.

Kapoor M, Winter T, Lis L, Georg GI, Siegel RA. Rapid delivery of diazepam from supersaturated solutions prepared using prodrug/enzyme mixtures: toward intranasal treatment of seizure emergencies. AAPS J. 2014;16(3):577-85. doi: 10.1208/s12248-014-9596-5, PMID 24700272.

Ali J, Ali M, Baboota S, Sahani JK, Ramassamy C, Dao L. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010;16(14):1644-53. doi: 10.2174/138161210791164108, PMID 20210751.

Djupesland PG, Skretting A, Winderen M, Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004;17(3):249-59. doi: 10.1089/jam.2004.17.249, PMID 15625817.

Quintana DS, Westlye lT, Alnæs D, Kaufmann T, Mahmoud RA, Smerud KT, Djupesland PG, Andreassen OA. low-dose intranasal oxytocin delivered with Breath Powered device modulates pupil diameter and amygdala activity: a randomized controlled pupillometry and fMRI study. Neuropsychopharmacology. 2019;44(2):306-13.

Quintana DS, Westlye lT, Alnæs D, Rustan ØG, Kaufmann T, Smerud KT, Mahmoud RA, Djupesland PG, Andreassen OA. low dose intranasal oxytocin delivered with breath powered device dampens amygdala response to emotional stimuli: a peripheral effect-controlled within-subjects randomized dose-response fMRI trial. Psychoneuroendocrinology. 2016;69:180-8.

Quintana DS, Westlye lT, Rustan ØG, Tesli N, Poppy CL, Smevik H, Tesli M, Røine M, Mahmoud RA, Smerud KT, Djupesland PG. low-dose oxytocin delivered intranasally with breath powered device affects social-cognitive behavior: a randomized four-way crossover trial with nasal cavity dimension assessment. Translational Psychiatry. 2015;5(7):e602.

Giroux M, Hwang P, Prasad A. Controlled particle dispersion: applying vortical flow to optimize nasal drug deposition. Drug Deliv Technol. 2005;5(3):44-9.

Maggio ET. Intravail: highly effective intranasal delivery of peptide and protein drugs. Expert Opin Drug Deliv. 2006;3(4):529-39. doi: 10.1517/17425247.3.4.529, PMID 16822227.

Roger C, Michael BW. Inventors; lightlake therapeutics inc., assignee. Nasal drug products and methods of their use. United States patent US9211253B2; 2015 Dec 15.

Gobetti C, Dissanayake S, Shur J, Ganley W, Silva L, Salem I. Bioequivalence of two tiotropium dry powder inhalers and the utility of realistic impactor testing. J Aerosol Med Pulm Drug Deliv. 2023;36(5):257-67. doi: 10.1089/jamp.2022.0065, PMID 37358626.

Luigi C. Inventor. Nasal breathing device. United States patent US5727543A; 1998 Mar 17.

Martin OC, Keith Y. Nasal medical ltd., inventor. Assignee. Nasal dilator. United States patents US20170027736. Vol. A1; 2019 Oct 1.

Xi J, Wang Z, Si XA, Zhou Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: in vitro tests and numerical modeling. Eur J Pharm Sci. 2018;118:113-23. doi: 10.1016/j.ejps.2018.03.027, PMID 29597042.

Amon AB. Inventor nasal inserts. United States patent US8517026B2; 2013 Aug 27.

Darin BA. Inventor. Ergonomic nasal cannula. United States patent US20170007794; 2019 Jun 18.

Meredith ME, Salameh TS, Banks WA. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J. 2015;17(4):780-7. doi: 10.1208/s12248-015-9719-7, PMID 25801717.

Maeng J, Lee K. Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol. 2022;13:1068495. doi: 10.3389/fphar.2022.1068495, PMID 36452220.

Jaiswal N, Sharma PK, Kumar A. Scope of nasal drug delivery: current challenges. World J Med Sci. 2017;14(4):97-112.

Pontiroli AE. Intranasal glucagon: a promising approach for treatment of severe hypoglycemia. J Diabetes Sci Technol. 2015;9(1):38-43. doi: 10.1177/1932296814557518, PMID 25385946.

Xu Y, Yuen PW, Lam JK. Intranasal DNA vaccine for protection against respiratory infectious diseases: the delivery perspectives. Pharmaceutics. 2014;6(3):378-415. doi: 10.3390/pharmaceutics6030378, PMID 25014738.

Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: factors to consider in research and development. Int J Pharm. 2021;609:121180. doi: 10.1016/j.ijpharm.2021.121180, PMID 34637935.

Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2016;23(3):681-93. doi: 10.3109/10717544.2014.920431, PMID 24901207.

Djupesland PG, Messina JC, Mahmoud RA. Breath powered nasal delivery: a new route to rapid headache relief. Headache. 2013;53Suppl 2:72-84. doi: 10.1111/head.12186, PMID 24024605.

Suman JD. Nasal drug delivery. Expert Opin Biol Ther. 2003;3(3):519-23. doi: 10.1517/14712598.3.3.519, PMID 12783620.

Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev. 2008;60(8):915-28. doi: 10.1016/j.addr.2007.05.017, PMID 18325628.

Dong J, Shang Y, Inthavong K, Chan HK, Tu J. Numerical comparison of nasal aerosol administration systems for efficient nose-to-brain drug delivery. Pharm Res. 2017;35(1):5. doi: 10.1007/s11095-017-2280-6, PMID 29288465.

Hoekman JD, Srivastava P, Ho RJ. Aerosol-stable peptide-coated liposome nanoparticles: a proof-of-concept study with opioid fentanyl in enhancing analgesic effects and reducing plasma drug exposure. J Pharm Sci. 2014;103(8):2231-9. doi: 10.1002/jps.24022, PMID 24909764.

Hoekman JD, Ho RJ. Enhanced analgesic responses after preferential delivery of morphine and fentanyl to the olfactory epithelium in rats. Anesth Analg. 2011;113(3):641-51. doi: 10.1213/ANE.0b013e3182239b8c, PMID 21709146.

John DH, Michael H, Alan B, Joel R, Rodney JY. Nasal drug delivery device. World Intellectual Property Organization WO2012119153A2; 2012 Sep 7.

Published

07-07-2024

How to Cite

PALDE, C., BAROT, T., CHAKRABORTHY, G. S., & PATEL, L. D. (2024). PEPTIDE DELIVERY VIA NASAL ROUTE: EXPLORING RECENT DEVELOPMENTS AND APPROACHES. International Journal of Applied Pharmaceutics, 16(4), 46–56. https://doi.org/10.22159/ijap.2024v16i4.50626

Issue

Section

Review Article(s)