EVALUATION OF THE ANTI-TYROSINASE-ANTI-AGING POTENTIAL AND METABOLITE PROFILING FROM THE BIOACTIVE FRACTION OF CORN COB (ZEA MAYS L.)

Authors

DOI:

https://doi.org/10.22159/ijap.2024.v16s1.18

Keywords:

Corn cob, Anti-tyrosinase, Anti-aging, LC-MS/MS, TLC-bioautography

Abstract

Objective: Maize (Zea mays L.) is a crop that has been widely cultivated in Indonesia. Using corn kernels on a large scale will produce much corn cob waste, usually unused. According to the literature search, corn cobs’ phytochemical studies and pharmacological activities still need to be improved. This study aims to determine the content of secondary metabolites (metabolite profiling) and their antityrosinase and anti-aging potential.

Methods: Corn cobs were macerated with methanol and fractionated with n-hexane, ethyl acetate, and butanol. The phytochemical profiling approach of the methanol extract was performed by liquid chromatography-mass spectra (LC-MS/MS). Anti-tyrosinase and anti-aging bioactivity were evaluated by thin layer chromatography (TLC)-bioautography and IC50 spectrophotometrically.

Results: The evaluation results show that the butanol fraction leads to a potential value (IC50 99.92 µg/ml). Several compounds, especially flavonoid compounds (including catechin; kaempferol 3-arabinofuranoside 7-rhamnoside; 6,8-Di-C-beta-D-arabino pyranosyl apigenin; 5,7-Dihydroxy-8,4’-dimethoxyisoflavone) were identified by LC-MS/MS by comparing the molecular mass of MS/MS data with literature data.

Conclusion: Based on this study, it can be concluded that butanol is the fraction that most actively inhibits tyrosinase, elastase, and collagenase enzymes, which means it potentially becomes a new anti-aging candidate.

Downloads

Download data is not yet available.

References

Pusat Data dan Sistem Informasi Pertania (Pusdatin). Analisis kinerja perdagangan jagung. Indonesia: Sekretariat Jenderal Kementerian Pertanian; 2021.

Kusriani H, Marliani L, Apriliani E. Aktivitas antioksidan dan tabir surya dari tongkol dan rambut jagung (Zea Mays L.). Indonesian J Pharm Sci Technol. 2017;4(1):10-7. doi: 10.15416/ijpst.v4i1.10428.

Mawardi RH, Suryanto E, Sudewi S. Aktivitas antioksidan dari fraksi tongkol jagung (Zea mays L.) yang diinduksi oleh Fe2+dan cahaya UV-B. Chem Prog. 2016;9(1):1-7. doi: 10.35799/cp.9.1.2016.13906.

Suryanto E, Momuat LI. Aktivitas singlet oxygen quenching senyawa flavonoid dari ekstrak etil asetat tongkol jagung (Zea mays). Chem Prog. 2016;9(2):55-62. doi: 10.35799/cp.9.2.2016.27988.

Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539-49. doi: 10.1111/j.1751-1097.2007.00226.x, PMID 18435612.

Wang Y, Curtis Long MJ, Lee BW, Yuk HJ, Kim DW, Tan XF. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg Med Chem. 2014;22(3):1115-20. doi: 10.1016/j.bmc.2013.12.047, PMID 24412339.

Sirat HM, Rezali MF, Ujang Z. Isolation and identification of radical scavenging and tyrosinase inhibition of polyphenols from Tibouchina semidecandra L. J Agric Food Chem. 2010;58(19):10404-9. doi: 10.1021/jf102231h, PMID 20809630.

Solimine J, Garo E, Wedler J, Rusanov K, Fertig O, Hamburger M. Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater. Fitoterapia. 2016;108:13-9. doi: 10.1016/j.fitote.2015.11.012, PMID 26592852.

Lee SG, Karadeniz F, Seo Y, Kong CS. Anti-melanogenic effects of flavonoid glycosides from limonium tetragonum (Thunb.) bullock via inhibition of tyrosinase and tyrosinase-related proteins. Molecules. 2017;22(9):1480-90. doi: 10.3390/molecules22091480, PMID 28872626.

Orhan IE, Khan MT. Flavonoid derivatives as potent tyrosinase inhibitors – a survey of recent findings between 2008-2013. Curr Top Med Chem. 2014;14(12):1486-93. doi: 10.2174/1568026614666140523120741, PMID 24853561.

Muhammad D, Hubert J, Lalun N, Renault JH, Bobichon H, Nour M. Isolation of flavonoids and triterpenoids from the fruits of Alphitonia neocaledonica and evaluation of their anti-oxidant, anti-tyrosinase and cytotoxic activities. Phytochem Anal. 2015;26(2):137-44. doi: 10.1002/pca.2545, PMID 25515713.

Dewi IK, Pramono S, Rohman A, Matien R. Potential of corncobs (Zea mays) fraction as tyrosinase inhibitor and natural antioxidant in vitro. Food Res. 2021;5(2):67-73. doi: 10.26656/fr.2017.5(2).465.

Kim YJ, Uyama H, Kobayashi S. Inhibition effects of (+)-catechin-aldehyde polycondensates on proteinases causing proteolytic degradation of extracellular matrix. Biochem Biophys Res Commun. 2004;320(1):256-61. doi: 10.1016/j.bbrc.2004.05.163, PMID 15207729.

Melzig MF, Loser B, Ciesielski S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie. 2001;56(12):967-70. PMID 11802662.

Liyanaarachchi GD, Samarasekera JKRR, Mahanama KRR, Hemalal KDP. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind Crops Prod. 2018;111:597-605. doi: 10.1016/j.indcrop.2017.11.019.

Girish KS, Kemparaju K, Nagaraju S, Vishwanath BS. Hyaluronidase inhibitors: a biological and therapeutic perspective. Curr Med Chem. 2009;16(18):2261-88. doi: 10.2174/092986709788453078, PMID 19519390.

Scotti L, Singla RK, Ishiki HM, Mendonca FJ, da Silva MS, Barbosa Filho JM. Recent advancement in natural hyaluronidase inhibitors. Curr Top Med Chem. 2016;16(23):2525-31. doi: 10.2174/1568026616666160414123857, PMID 27086786.

Ismed F, Taher M, Ichwan SJA, Bakhtiar A, Husnunnisa H. Screening of some Sumatran medicinal plants and selected secondary metabolites for their cytotoxic potential against MCF-7 and HSC-3 cell lines. JRP. 2019;23(4):770-6. doi: 10.12991/jrp.2019.186.

Andania MM, Ismed F, Taher M, Ichwan SJA, Bakhtiar A, Arbain D. Cytotoxic activities of extracts and isolated compounds of some potential Sumatran medicinal plants against MCF-7 and HSC-3 cell lines. J Math Fundam Sci. 2019;51(3):225-42. doi: 10.5614/j.math.fund.sci.2019.51.3.2.

Sardi VF, Astika A, Jalius IM, Ismed F. Quantification of mangiferin from the bioactive fraction of mango leaves (Mangifera indica L.) and evaluation of wound-healing potential. Jordan J Pharm Sci 2023;16(3):595-606. doi: 10.35516/jjps.v16i3.652.

Wangthong S, Tonsiripakdee I, Monhaphol T, Nonthabenjawan R, Wanichwecharungruang SP. Post TLC developing technique for tyrosinase inhibitor detection. Biomed Chromatogr. 2007;21(1):94-100. doi: 10.1002/bmc.727, PMID 17120304.

Momtaz S, Mapunya BM, Houghton PJ, Edgerly C, Hussein A, Naidoo S. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J Ethnopharmacol. 2008;119(3):507-12. doi: 10.1016/j.jep.2008.06.006, PMID 18573327.

Moon JY, Yim EY, Song G, Lee NH, Hyun CG. Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. EJOBIOS. 2010;4:41-53. doi: 10.5053/ejobios.2010.4.0.6.

Sahasrabud A, Deodhar M. Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int J Bot. 2010;6(3):299-303. doi: 10.3923/ijb.2010.299.303.

Susanti E, Ciptati, Ratnawati R, Aulanni’am, Rudijanto A. Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS. Asian Pac J Trop Biomed. 2015;5(12):1046-50. doi: 10.1016/j.apjtb.2015.09.013.

Razgonova M, Zinchenko Y, Pikula K, Tekutyeva L, Son O, Zakharenko A. Spatial distribution of polyphenolic compounds in corn grains (Zea mays L. var. pioneer) studied by laser confocal microscopy and high-resolution mass spectrometry. Plants (Basel). 2022;11(5):1-21. doi: 10.3390/plants11050630, PMID 35270099.

Fougere L, Zubrzycki S, Elfakir C, Destandau E. Characterization of corn silk extract using HPLC/HRMS/MS analyses and bioinformatic data processing. Plants (Basel). 2023;12(4):721. doi: 10.3390/plants12040721, PMID 36840069.

Demİr E, Serdar G, Sokmen M. Comparison of some extraction methods for isolation of catechins and caffeine from Turkish green tea. Int J Second Metabolite. 2015;2(2):16-25. doi: 10.21448/ijsm.240702.

Desai S, Tatke P, Gabhe SY. Isolation of catechin from stem bark of Albizia lebbeck. Int J Anal Pharm Biomed Sci. 2014;3(2):31-5.

Sarria Villa RA, Corredor JAG, Isabel Paez M. Isolation of catechin and gallic acid from colombian bark of pinus patula. Chem Sci J. 2017;08(4):1-11. doi: 10.4172/2150-3494.1000174.

Dong JJ, Ye JH, Lu JL, Zheng XQ, Liang YR. Isolation of antioxidant catechins from green tea and its decaffeination. Food Bioprod Process. 2011;89(1):62-6. doi: 10.1016/j.fbp.2010.02.003.

Nuryana I, Ratnakomala S, Fahrurrozi JAB, Andriani A, Putra FJLN, Rezamela E. Catechin contents, antioxidant and antibaceterial activities of different types of Indonesia Tea (Camellia sinensis). Ann Bogorienses. 2020;24(2):106-113;24:n2.106-13. doi: 10.14203/ann.

Lee S, Yu JS, Phung HM, Lee JG, Kim KH, Kang KS. Potential anti-skin aging effect of (-)-catechin isolated from the root bark of ulmus davidiana var. japonica in tumor necrosis factor-α-stimulated normal human dermal fibroblasts. Antioxidants (Basel). 2020;9(10):1-13. doi: 10.3390/antiox9100981, PMID 33066025.

Patient A, Jean Marie E, Robinson JC, Martial K, Meudec E, Levalois Grutzmacher J. Polyphenol composition and antioxidant activity of tapirira guianensis aubl. (Anarcadiaceae) leaves. Plants (Basel). 2022;11(3):1-14. doi: 10.3390/plants11030326, PMID 35161307.

Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLOS ONE. 2018;13(5):e0197563. doi: 10.1371/journal.pone.0197563, PMID 29771951.

Wu M, Cai J, Fang Z, Li S, Huang Z, Tang Z. The composition and anti-aging activities of polyphenol extract from Phyllanthus emblica L. fruit. Nutrients. 2022;14(4):1-18. doi: 10.3390/nu14040857, PMID 35215512.

Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot. 2021;137:257-64. doi: 10.1016/j.sajb.2020.10.022.

Martinez CA, Mosquera OM, Nino J. Apigenin glycoside: an antioxidant isolated from Alchornea coelophylla pax & k. Hoffm. (euphorbiaceae) leaf extract. Univ Sci 2016;21(3):245-57. doi: 10.11144/Javeriana.SC21-3.agaa.

Sanchez Marzo N, Perez Sanchez A, Ruiz Torres V, Martinez Tebar A, Castillo J, Herranz Lopez M. Antioxidant and photoprotective activity of apigenin and its potassium salt derivative in human keratinocytes and absorption in caco-2 cell monolayers. Int J Mol Sci. 2019;20(9):1-13. doi: 10.3390/ijms20092148, PMID 31052292.

Szymczak G, Wojciak Kosior M, Sowa I, Zapała K, Strzemski M, Kocjan R. Evaluation of isoflavone content and antioxidant activity of selected soy taxa. Journal of Food Composition and Analysis. 2017;57:40-8. doi: 10.1016/j.jfca.2016.12.015.

Choi YM, Yoon H, Lee S, Ko HC, Shin MJ, Lee MC. Isoflavones, anthocyanins, phenolic content, and antioxidant activities of black soybeans (Glycine max (L.) Merrill) as affected by seed weight. Sci Rep. 2020;10(1):19960. doi: 10.1038/s41598-020-76985-4, PMID 33203918.

Legerska B, Chmelova D, Ondrejovic M, Miertus S. The TLC-bioautography as a tool for rapid enzyme inhibitors detection–a review. Crit Rev Anal Chem. 2022;52(2):275-93. doi: 10.1080/10408347.2020.1797467, PMID 32744081.

El-Nashar HAS, El-Din MIG, Hritcu L, Eldahshan OA. Insights on the inhibitory power of flavonoids on tyrosinase activity: a survey from 2016 to 2021. Molecules. 2021;26(24):7546. doi: 10.3390/molecules26247546, PMID 34946631.

Kong Y, Li X, Zhang N, Miao Y, Feng H, Wu T. Improved bioautographic assay on TLC layers for qualitative and quantitative estimation of xanthine oxidase inhibitors and superoxide scavengers. J Pharm Biomed Anal. 2018;150:87-94. doi: 10.1016/j.jpba.2017.11.077, PMID 29216590.

Published

15-02-2024

How to Cite

HARAHAP, A., TRIAMARTA, S., KHARISMA, D., HANIFAH, W., IQBAL, M., ARIFA, N., & ISMED, F. (2024). EVALUATION OF THE ANTI-TYROSINASE-ANTI-AGING POTENTIAL AND METABOLITE PROFILING FROM THE BIOACTIVE FRACTION OF CORN COB (ZEA MAYS L.). International Journal of Applied Pharmaceutics, 16(1), 71–76. https://doi.org/10.22159/ijap.2024.v16s1.18

Issue

Section

Original Article(s)