UNDERSTANDING NANO-BIO-INTERACTIONS WITH CORRESPONDING BIOLOGICAL RESPONSES: INSIGHTS AND IMPACT ON NANO ASSEMBLY AND DISASSEMBLY
DOI:
https://doi.org/10.22159/ijap.2025v17i1.50745Keywords:
Nano-bio interaction, Nanotechnology, 2-Dimensional, Assembly, DisassemblyAbstract
Using stimuli-responsive Bio Interactions with controlled nano-assembly is proving a potent method for generating theranostic nanosystems that satisfy the needs of modern medicine for example targeted delivery which is very helpful for cancer treatment with minimum side effects. However, because of the limitations in our knowledge, this promising topic is still in the proof-of-concept stage. This study provides an overview of the most recent theoretical and experimental advancements in biological fate, functional activity of nano-assemblies, and nano-bio interactions with exogenous stimulus-triggered systems (Light-responsive systems, Ultrasound-responsive systems, Magnetic field-responsive systems, and Thermal-responsive systems)endogenous stimulus-triggered systems (Ph-Responsive Systems, Redox-responsive systems, Enzyme-responsive systems) and multi stimuli system. Related biological consequences reactions. Firstly, we intend to thoroughly explain these relationships in this review.
the relationship between interaction studies and nano-based stimuli; the important physicochemical characteristics of in vivo stimuli, such as responsive assembly and disassembly; biological applications; and pharmacokinetic (pk) parameters based on nano-bio interaction.
Downloads
References
Zhang Z, Zhang D, Wei L, Wang X, Xu Y, Li HW, et al. Temperature responsive fluorescent polymer nanoparticles (TRFNPs) for cellular imaging and controlled releasing of drug to living cells. Colloids Surf B Biointerfaces [Internet]. 2017;159:905–12. Available from: http://dx.doi.org/10.1016/j.colsurfb.2017.08.060
Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HM. Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. Journal of Materials Research and Technology. 8(1):1497–509.
Xiang J, Tong X, Shi F, Yan Q, Yu B, Zhao Y. Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity. J Mater Chem B Mater Biol Med [Internet]. 2018;6(21):3531–40. Available from: http://dx.doi.org/10.1039/c8tb00651b
Mavuso S, Choonara YE, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD, et al. A dual pH/Redox responsive copper-ligand nanoliposome bioactive complex for the treatment of chronic inflammation. Int J Pharm [Internet]. 2016;509(1–2):348–59. Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.05.069
Li H, Yang X, Zhou Z, Wang K, Li C, Qiao H, et al. Near-infrared light-triggered drug release from a multiple lipid carrier complex using an all-in-one strategy. J Control Release [Internet]. 2017;261:126–37. Available from: http://dx.doi.org/10.1016/j.jconrel.2017.06.029
Jin Q, Mitschang F, Agarwal S. Biocompatible drug delivery system for photo-triggered controlled release of 5-Fluorouracil. Biomacromolecules [Internet]. 2011;12(10):3684–91. Available from: http://dx.doi.org/10.1021/bm2009125
Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun (Camb) [Internet]. 2010;46(23):4094–6. Available from: http://dx.doi.org/10.1039/c002565h
Gwon K, Jo EJ, Sahu A, Lee JY, Kim MG, Tae G. Improved near infrared-mediated hydrogel formation using diacrylated Pluronic F127-coated upconversion nanoparticles. Mater Sci Eng C Mater Biol Appl [Internet]. 2018;90:77–84. Available from: http://dx.doi.org/10.1016/j.msec.2018.04.029
Yi C, Yu Z, Ren Q, Liu X, Wang Y, Sun X, et al. Nanoscale ZnO-based photosensitizers for photodynamic therapy. PhotodiagnosisPhotodyn Ther [Internet]. 2020;30(101694):101694. Available from: http://dx.doi.org/10.1016/j.pdpdt.2020.101694
Li Q, Li W, Di H, Luo L, Zhu C, Yang J, et al. A photosensitive liposome with NIR light triggered doxorubicin release as a combined photodynamic-chemo therapy system. J Control Release [Internet]. 2018;277:114–25. Available from: http://dx.doi.org/10.1016/j.jconrel.2018.02.001
Luo Z, Jin K, Pang Q, Shen S, Yan Z, Jiang T, et al. On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl Mater Interfaces [Internet]. 2017;9(37):31612–25. Available from: http://dx.doi.org/10.1021/acsami.7b10866
De Cock I, Lajoinie G, Versluis M, De Smedt SC, Lentacker I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials [Internet]. 2016;83:294–307. Available from: http://dx.doi.org/10.1016/j.biomaterials.2016.01.022
Dewitte H, Vanderperren K, Haers H, Stock E, Duchateau L, Hesta M, et al. Theranostic mRNA-loaded microbubbles in the lymphatics of dogs: implications for drug delivery. Theranostics [Internet]. 2015;5(1):97–109. Available from: http://dx.doi.org/10.7150/thno.10298
Paris JL, Manzano M, Cabañas MV, Vallet-Regí M. Mesoporous silica nanoparticles engineered for ultrasound-induced uptake by cancer cells. Nanoscale [Internet]. 2018;10(14):6402–8. Available from: http://dx.doi.org/10.1039/c8nr00693h
Papa AL, Korin N, Kanapathipillai M, Mammoto A, Mammoto T, Jiang A, et al. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. Biomaterials [Internet]. 2017;139:187–94. Available from: http://dx.doi.org/10.1016/j.biomaterials.2017.06.003
Hosseini-Nassab N, Samanta D, Abdolazimi Y, Annes JP, Zare RN. Electrically controlled release of insulin using polypyrrole nanoparticles. Nanoscale [Internet]. 2017;9(1):143–9. Available from: http://dx.doi.org/10.1039/c6nr08288b
Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA. Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery. Ultrasound Med Biol [Internet]. 2010;36(9):1470–80. Available from: http://dx.doi.org/10.1016/j.ultrasmedbio.2010.06.010
Yang HY, Li Y, Lee DS. Multifunctional and stimuli‐responsive magnetic nanoparticle‐based delivery systems for biomedical applications. Adv Ther (Weinh) [Internet]. 2018;1(2):1800011. Available from: http://dx.doi.org/10.1002/adtp.201800011
Su FY, Chen J, Son HN, Kelly AM, Convertine AJ, West TE, et al. Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections. Biomater Sci [Internet]. 2018;6(7):1976–85. Available from: http://dx.doi.org/10.1039/c8bm00282g
Hoare T, Santamaria J, Goya GF. V. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J Controll Release. 2009;198(10):35–54.
Zhou X, Wang L, Xu Y, Du W, Cai X, Wang F, et al. A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv [Internet]. 2018;8(18):9812–21. Available from: http://dx.doi.org/10.1039/c8ra00215k
Wang Y, Li B, Xu F, Han Z, Wei D, Jia D, et al. Tough magnetic chitosan hydrogel nanocomposites for remotely stimulated drug release. Biomacromolecules [Internet]. 2018;19(8):3351–60. Available from: http://dx.doi.org/10.1021/acs.biomac.8b00636
Lee K, Bae KH, Lee Y, Lee SH, Ahn CH, Park TG. Pluronic/polyethylenimine shell crosslinked nanocapsules with embedded magnetite nanocrystals for magnetically triggered delivery of siRNA. MacromolBiosci [Internet]. 2010;10(3):239–45. Available from: http://dx.doi.org/10.1002/mabi.200900291
Zhu Y, Tao C, Sánchez-Moreno P. DNA-capped Fe 3 O 4/SiO 2 magnetic mesoporous silica nanoparticles for potential controlled drug release and hyperthermia. Recent Advance in Synthesis and Biomedical Applications Nanomaterials. 2015;5.
Khoee S, Karimi MR. Dual-drug loaded Janus graphene oxide-based thermoresponsive nanoparticles for targeted therapy. Polymer (Guildf) [Internet]. 2018;142:80–98. Available from: http://dx.doi.org/10.1016/j.polymer.2018.03.022
Yang J, Zhai S, Qin H, Yan H, Xing D, Hu X. NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy. Biomaterials [Internet]. 2018;176:1–12. Available from: http://dx.doi.org/10.1016/j.biomaterials.2018.05.033
Aathimanikandan SV, Savariar EN, Thayumanavan S. Temperature-sensitive dendritic micelles. J Am Chem Soc [Internet]. 2005;127(42):14922–9. Available from: http://dx.doi.org/10.1021/ja054542y
Li Y, Pan S, Zhang W, Du Z. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery. Nanotechnology [Internet]. 2009;20(6):065104. Available from: http://dx.doi.org/10.1088/0957-4484/20/6/065104
Haba Y, Kojima C, Harada A, Kono K. Comparison of thermosensitive properties of poly (amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups. AngewandteChemie International Edition. 2007;(1–2):234–7.
Liu YY, Shao YH, Lü J. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials [Internet]. 2006;27(21):4016–24. Available from: http://dx.doi.org/10.1016/j.biomaterials.2006.02.042
Dreher MR, Liu W, Michelich CR, Dewhirst MW, Chilkoti A. Data from thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors [Internet]. 2023. Available from: http://dx.doi.org/10.1158/0008-5472.c.6496398.v1
Carmona-Moran CA, Zavgorodnya O, Penman AD, Kharlampieva E, Bridges SL Jr, Hergenrother RW, et al. Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels. Int J Pharm [Internet]. 2016;509(1–2):465–76. Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.05.062
Gao Y, Chan CU, Gu Q, Lin X, Zhang W, Yeo DCL, et al. Controlled nanoparticle release from stable magnetic microbubble oscillations. NPG Asia Mater [Internet]. 2016;8(4):e260–e260. Available from: http://dx.doi.org/10.1038/am.2016.37
Said SS, Campbell S, Hoare T. Externally addressable smart drug delivery vehicles: Current technologies and future directions. Chem Mater [Internet]. 2019;31(14):4971–89. Available from: http://dx.doi.org/10.1021/acs.chemmater.9b01798
Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.
Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int [Internet]. 2013;13(1):89. Available from: http://dx.doi.org/10.1186/1475-2867-13-89
Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56(6):1194–8.
Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A [Internet]. 1978;75(7):3327–31. Available from: http://dx.doi.org/10.1073/pnas.75.7.3327
Pan D, She W, Guo C, Luo K, Yi Q, Gu Z. PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials [Internet]. 2014;35(38):10080–92. Available from: http://dx.doi.org/10.1016/j.biomaterials.2014.09.006
Cui T, Zhang S, Sun H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep [Internet]. 2017;37(2):1253–60. Available from: http://dx.doi.org/10.3892/or.2017.5345
Han HS, Lee J, Kim HR. Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: mineralization and its effect on tumor targetability in vivo. J Control Release [Internet]. 2013;168(2):105–14. Available from: http://dx.doi.org/10.1016/j.jconrel.2013.02.022Han
Dai J, Nagai T, Wang X, Zhang T, Meng M, Zhang Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int J Pharm [Internet]. 2004;280(1–2):229–40. Available from: http://dx.doi.org/10.1016/j.ijpharm.2004.05.006
Ulbrich K, Etrych T, Chytil P, Jelínková M, Ríhová B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J Drug Target [Internet]. 2004;12(8):477–89. Available from: http://dx.doi.org/10.1080/10611860400011869
Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl [Internet]. 2003;42(38):4640–3. Available from: http://dx.doi.org/10.1002/anie.200250653
Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Advanced drug delivery reviews. 2009;61:768–84.
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med [Internet]. 2001;30(11):1191–212. Available from: http://dx.doi.org/10.1016/s0891-5849(01)00480-4
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev [Internet]. 2009;109(2):259–302. Available from: http://dx.doi.org/10.1021/cr800409e
Xiao D, Jia HZ, Ma N, Zhuo RX, Zhang XZ. A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery. Nanoscale [Internet]. 2015;7(22):10071–7. Available from: http://dx.doi.org/10.1039/c5nr02247a
Zhang Y, Guo Q, An S, Lu Y, Li J, He X, et al. ROS-switchable polymeric nanoplatform with stimuli-responsive release for active targeted drug delivery to breast cancer. ACS Appl Mater Interfaces [Internet]. 2017;9(14):12227–40. Available from: http://dx.doi.org/10.1021/acsami.6b16815
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol [Internet]. 2014;5:77. Available from: http://dx.doi.org/10.3389/fphar.2014.00077
Ren H, Wu Y, Ma N, Xu H, Zhang X. Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly. Soft Matter [Internet]. 2012;8(5):1460–6. Available from: http://dx.doi.org/10.1039/c1sm06673k
Oba M, Vachutinsky Y, Miyata K, Kano MR, Ikeda S, Nishiyama N, et al. Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid DNA encoding soluble flt-1. Mol Pharm [Internet]. 2010;7(2):501–9. Available from: http://dx.doi.org/10.1021/mp9002317
Liberti MV, Locasale JW. Correction to: ‘the Warburg effect: How does it benefit cancer cells?’ Trends Biochem Sci [Internet]. 2016;41(3):287. Available from: http://dx.doi.org/10.1016/j.tibs.2016.01.004
Calderón M, Welker P, Licha K, Graeser R, Kratz F, Haag R. Development of efficient macromolecular prodrugs derived from dendritic polyglycerol. J Control Release [Internet]. 2010;148(1):e24-5. Available from: http://dx.doi.org/10.1016/j.jconrel.2010.07.036
Gong F, Peng X, Luo C, Shen G, Zhao C, Zou L, et al. Cathepsin B as a potential prognostic and therapeutic marker for human lung squamous cell carcinoma. Mol Cancer [Internet]. 2013;12(1):125. Available from: http://dx.doi.org/10.1186/1476-4598-12-125
Tarassoli SP, de Pinillos Bayona AM, Pye H, Mosse CA, Callan JF, MacRobert A, et al. Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy. Nanotechnology [Internet]. 2017;28(5):055101. Available from: http://dx.doi.org/10.1088/1361-6528/28/5/055101
Mao J, Gan Z. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(epsilon-caprolactone)] copolymers: The influence of pendant hydroxyl groups on …. MacromolBiosci. 2009;9:1080–9. Available from: http://dx.doi.org/10.1002/mabi.200900104
Calderón M, Graeser R, Kratz F, Haag R. Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg Med Chem Lett [Internet]. 2009;19(14):3725–8. Available from: http://dx.doi.org/10.1016/j.bmcl.2009.05.058
Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, et al. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem [Internet]. 2006;17(6):1464–72. Available from: http://dx.doi.org/10.1021/bc060240p
Aimetti AA, Machen AJ, Anseth KS. Poly (ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials. 2009;30(30):6048–54.
Zhao C, Zhuang X, He P. Synthesis of biodegradable thermo-and pH-responsive hydrogels for controlled drug release. Polymer. 2009;50(18):4308–16.
Thamphiwatana S, Gao W, Pornpattananangkul D, Zhang Q, Fu V, Li J, et al. Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Mater Chem B Mater Biol Med [Internet]. 2014;2(46):8201–7. Available from: http://dx.doi.org/10.1039/C4TB01110D
Cai H, Wang X, Zhang H, Sun L, Pan D, Gong Q, et al. Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Appl Mater Today [Internet]. 2018;11:207–18. Available from: http://dx.doi.org/10.1016/j.apmt.2018.02.003
Lei B, Chen M, Wang Y, Zhang J, Xu S, Liu H. Double security drug delivery system DDS constructed by multi-responsive (pH/redox/US) microgel. Colloids Surf B Biointerfaces [Internet]. 2020;193(111022):111022. Available from: http://dx.doi.org/10.1016/j.colsurfb.2020.111022
Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y. Multi-stimuli-responsive polymeric materials. Chemistry [Internet]. 2015;21(38):13164–74. Available from: http://dx.doi.org/10.1002/chem.201501101
Wang L, Liu L, Dong B, Zhao H, Zhang M, Chen W, et al. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer. Acta Biomater [Internet]. 2017;54:259–70. Available from: http://dx.doi.org/10.1016/j.actbio.2017.03.009
Qian C, Yu J, Chen Y, Hu Q, Xiao X, Sun W, et al. Anticancer therapy: Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy (adv. Mater. 17/2016). Adv Mater [Internet]. 2016;28(17):3226. Available from: http://dx.doi.org/10.1002/adma.201670115
Lu N, Huang P, Fan W, Wang Z, Liu Y, Wang S, et al. Tri-stimuli-responsive biodegradable theranostics for mild hyperthermia enhanced chemotherapy. Biomaterials [Internet]. 2017;126:39–48. Available from: http://dx.doi.org/10.1016/j.biomaterials.2017.02.025
Hegazy M, Zhou P, Wu G, Wang L, Rahoui N, Taloub N, et al. Construction of polymer coated core–shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polym Chem [Internet]. 2017;8(38):5852–64. Available from: http://dx.doi.org/10.1039/c7py01179b
Feng Q, Zhang Y, Zhang W, Shan X, Yuan Y, Zhang H, et al. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater [Internet]. 2016;38:129–42. Available from: http://dx.doi.org/10.1016/j.actbio.2016.04.024
Li F, Lu J, Kong X, Hyeon T, Ling D. Dynamic nanoparticle assemblies for biomedical applications. Adv Mater [Internet]. 2017;29(14). Available from: http://dx.doi.org/10.1002/adma.201605897
Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials [Internet]. 2020;232(119707):119707. Available from: http://dx.doi.org/10.1016/j.biomaterials.2019.119707
Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, et al. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J Control Release [Internet]. 2020;322:566–92. Available from: http://dx.doi.org/10.1016/j.jconrel.2020.03.051
Low LE, Wu J, Lee J, Tey BT, Goh BH, Gao J, et al. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. J Control Release [Internet]. 2020;324:69–103. Available from: http://dx.doi.org/10.1016/j.jconrel.2020.05.014
Hirsjärvi S, Sancey L, Dufort S, Belloche C, Vanpouille-Box C, Garcion E, et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting. Int J Pharm [Internet]. 2013;453(2):594–600. Available from: http://dx.doi.org/10.1016/j.ijpharm.2013.05.057
Yuan Y, Zhang CJ, Kwok RTK, Mao D, Tang BZ, Liu B. Light-up probe based on AIEgens: dual signal turn-on for caspase cascade activation monitoring. Chem Sci [Internet]. 2017;8(4):2723–8. Available from: http://dx.doi.org/10.1039/c6sc04322d
Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer [Internet]. 2011;11(9):671–7. Available from: http://dx.doi.org/10.1038/nrc3110
Harris RJ, Cloughesy TF, Liau LM, Prins RM, Antonios JP, Li D, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol [Internet]. 2015;17(11):1514–24. Available from: http://dx.doi.org/10.1093/neuonc/nov106
Darwich Z, Klymchenko AS, Dujardin D, Mély Y. Imaging lipid order changes in endosome membranes of live cells by using a Nile Red-based membrane probe. RSC Adv [Internet]. 2014;4(17):8481–8. Available from: http://dx.doi.org/10.1039/c3ra47181k
Dou Y, Guo Y, Li X, Li X, Wang S, Wang L, et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano [Internet]. 2016;10(2):2536–48. Available from: http://dx.doi.org/10.1021/acsnano.5b07473
Karimi M, Ghasemi A, SahandiZangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev [Internet]. 2016;45(5):1457–501. Available from: http://dx.doi.org/10.1039/c5cs00798d
Niko Y, Arntz Y, Mely Y, Konishi GI, Klymchenko AS. Disassembly-driven fluorescence turn-on of polymerized micelles by reductive stimuli in living cells. Chemistry [Internet]. 2014;20(50):16473–7. Available from: http://dx.doi.org/10.1002/chem.201405040
Li J, Hai Z, Xiao H, Yi X, Liang G. Intracellular self-assembly of Ru (bpy) 3 2+ nanoparticles enables persistent phosphorescence imaging of tumors. Chemical Communications. 2018;54(28):3460–3.
Li H, Wang P, Deng Y, Zeng M, Tang Y, Zhu WH, et al. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials [Internet]. 2017;139:30–8. Available from: http://dx.doi.org/10.1016/j.biomaterials.2017.05.030
Chien MP, Carlini AS, Hu D, Barback CV, Rush AM, Hall DJ, et al. Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. J Am Chem Soc [Internet]. 2013;135(50):18710–3. Available from: http://dx.doi.org/10.1021/ja408182p
Ma X, Wang Y, Zhao T, Li Y, Su LC, Wang Z, et al. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J Am Chem Soc [Internet]. 2014;136(31):11085–92. Available from: http://dx.doi.org/10.1021/ja5053158
Yu J, He X, Wang Z, Liu S, Hao D, Li X, et al. Combination of starvation therapy and Pt-NP based chemotherapy for synergistic cancer treatment. J Mater Chem B Mater Biol Med [Internet]. 2021;9(32):6406–11. Available from: http://dx.doi.org/10.1039/d1tb01222c
Gao X, Yue Q, Liu Z, Ke M, Zhou X, Li S, et al. Guiding brain-tumor surgery via blood-brain-barrier-permeable gold nanoprobes with acid-triggered MRI/SERRS signals. Adv Mater [Internet]. 2017;29(21). Available from: http://dx.doi.org/10.1002/adma.201603917
Park H, Kim J, Jung S, Kim WJ. DNA‐Au nanomachine equipped with i‐motif and G‐quadruplex for triple combinatorial anti‐tumor therapy. Adv Funct Mater [Internet]. 2018;28(5):1705416. Available from: http://dx.doi.org/10.1002/adfm.201705416
Chuan X, Song Q, Lin J. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly (ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Molecular Pharmaceutics. 2014;11(10):3656–70.
Koo AN, Min KH, Lee HJ, Lee SU, Kim K, Kwon IC, et al. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links. Biomaterials [Internet]. 2012;33(5):1489–99. Available from: http://dx.doi.org/10.1016/j.biomaterials.2011.11.013
Zhang Z, Yin L, Tu C, Song Z, Zhang Y, Xu Y, et al. Redox-responsive, core cross-linked polyester micelles. ACS Macro Lett [Internet]. 2013;2(1):40–4. Available from: http://dx.doi.org/10.1021/mz300522n
Li L, Fu S, Chen C. Microenvironment-driven bioelimination of magnetoplasmonicnanoassemblies and their multimodal imaging-guided tumor photothermal therapy. ACS Nano [Internet]. 2016;10(7):7094–105. Available from: http://dx.doi.org/10.1021/acsnano.6b03238
Purcell BP, Lobb D, Charati MB, Dorsey SM, Wade RJ, Zellars KN, et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat Mater [Internet]. 2014;13(6):653–61. Available from: http://dx.doi.org/10.1038/nmat3922
Gallo J, Kamaly N, Lavdas I, Stevens E, Nguyen QD, Wylezinska-Arridge M, et al. CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew Chem Int Ed Engl [Internet]. 2014;53(36):9550–4. Available from: http://dx.doi.org/10.1002/anie.201405442
Huang P, Gao Y, Lin J, Hu H, Liao HS, Yan X, et al. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano [Internet]. 2015;9(10):9517–27. Available from: http://dx.doi.org/10.1021/acsnano.5b03874
He C, Yin L, Tang C, Yin C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials [Internet]. 2012;33(33):8569–78. Available from: http://dx.doi.org/10.1016/j.biomaterials.2012.07.063
Verma MS, Liu S, Chen YY, Meerasa A, Gu FX. Size-tunable nanoparticles composed of dextran-b-poly (D, L-lactide) for drug delivery applications. Nano Research. 2012:49–61.
Gaumet M, Gurny R, Delie F. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci [Internet]. 2009;36(4–5):465–73. Available from: http://dx.doi.org/10.1016/j.ejps.2008.11.015
Pawar VK, Meher JG, Singh Y, Chaurasia M, Surendar Reddy B, Chourasia MK. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives. J Control Release [Internet]. 2014;196:168–83. Available from: http://dx.doi.org/10.1016/j.jconrel.2014.09.031
Xu Q, Ensign LM, Boylan NJ, Schön A, Gong X, Yang JC, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano [Internet]. 2015;9(9):9217–27. Available from: http://dx.doi.org/10.1021/acsnano.5b03876
Guo J, Bourre L, Soden DM, O’Sullivan GC, O’Driscoll C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv [Internet]. 2011;29(4):402–17. Available from: http://dx.doi.org/10.1016/j.biotechadv.2011.03.003
Bourganis V, Karamanidou T, Samaridou E, Karidi K, Kammona O, Kiparissides C. On the synthesis of mucus permeating nanocarriers. Eur J Pharm Biopharm [Internet]. 2015;97(Pt A):239–49. Available from: http://dx.doi.org/10.1016/j.ejpb.2015.01.021
Guo J, Fisher KA, Darcy R, Cryan JF, O’Driscoll C. Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol Biosyst [Internet]. 2010;6(7):1143–61. Available from: http://dx.doi.org/10.1039/c001050m
Prego C, Fabre M, Torres D, Alonso MJ. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res [Internet]. 2006;23(3):549–56. Available from: http://dx.doi.org/10.1007/s11095-006-9570-8
Huang Y, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco-and bioadhesion:: Tethered structures and site-specific surfaces. Journal of controlled release. 2000;65(1–2):63–71.
Reineke J, Cho DY, Dingle YL, Cheifetz P, Laulicht B, Lavin D, et al. Can bioadhesive nanoparticles allow for more effective particle uptake from the small intestine? J Control Release [Internet]. 2013;170(3):477–84. Available from: http://dx.doi.org/10.1016/j.jconrel.2013.05.043
Fan T, Chen C, Guo H, Xu J, Zhang J, Zhu X, et al. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur J Pharm Biopharm [Internet]. 2014;88(2):518–28. Available from: http://dx.doi.org/10.1016/j.ejpb.2014.06.011
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) [Internet]. 2008;3(5):703–17. Available from: http://dx.doi.org/10.2217/17435889.3.5.703
Sonaje K, Lin KJ, Wey SP, Lin CK, Yeh TH, Nguyen HN, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Biomaterials [Internet]. 2010;31(26):6849–58. Available from: http://dx.doi.org/10.1016/j.biomaterials.2010.05.042
Tian Q, Zhang CN, Wang XH. Glycyrrhetinic acid-modified chitosan/poly (ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010;31(17):4748–56.
Konwarh R, Karak N, Rai SK, Mukherjee AK. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology [Internet]. 2009;20(22):225107. Available from: http://dx.doi.org/10.1088/0957-4484/20/22/225107
Yang Z, Lu Y, Yang Z. ChemInform abstract: Mesoporous materials: Tunable structure, morphology and composition. ChemInform [Internet]. 2009;40(27). Available from: http://dx.doi.org/10.1002/chin.200927203
Aghili Z, Taheri S, Zeinabad HA, Pishkar L, Saboury AA, Rahimi A, et al. Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PLoS One [Internet]. 2016;11(10):e0164878. Available from: http://dx.doi.org/10.1371/journal.pone.0164878
You CC, Agasti SS, De M, Knapp MJ, Rotello VM. Modulation of the catalytic behavior of α-chymotrypsin at 15. 128:14612–8.
Bera S, Dhar J, Dasgupta R, Basu G, Chakraborti S, Chakrabarti P. Molecular features of interaction involving hen egg white lysozyme immobilized on graphene oxide and the effect on activity. Int J BiolMacromol [Internet]. 2018;120(Pt B):2390–8. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2018.09.007
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films [Internet]. arXiv [cond-mat.mtrl-sci]. 2004 [cited 2024 Apr 5]. Available from: http://arxiv.org/abs/cond-mat/0410550
Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chem Rev [Internet]. 2013;113(5):3766–98. Available from: http://dx.doi.org/10.1021/cr300263a
Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev [Internet]. 2016;116(9):5464–519. Available from: http://dx.doi.org/10.1021/acs.chemrev.5b00620
Ghosal K, Sarkar K. Biomedical applications of graphene nanomaterials and beyond. ACS Biomater Sci Eng [Internet]. 2018;4(8):2653–703. Available from: http://dx.doi.org/10.1021/acsbiomaterials.8b00376
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater [Internet]. 2017;2(8):17033. Available from: http://dx.doi.org/10.1038/natrevmats.2017.33
McCallion C, Burthem J, Rees-Unwin K, Golovanov A, Pluen A. Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur J Pharm Biopharm [Internet]. 2016;104:235–50. Available from: http://dx.doi.org/10.1016/j.ejpb.2016.04.015
Wu T, Jiang Q, Wu D, Hu Y, Chen S, Ding T, et al. What is new in lysozyme research and its application in food industry? A review. Food Chem [Internet]. 2019;274:698–709. Available from: http://dx.doi.org/10.1016/j.foodchem.2018.09.017
Fu X, Lu Y, Guo J, Liu H, Deng A, Kuang C, et al. K237-modified thermosensitive liposome enhanced the delivery efficiency and cytotoxicity of paclitaxel in vitro. J Liposome Res [Internet]. 2019;29(1):86–93. Available from: http://dx.doi.org/10.1080/08982104.2018.1458863
Monteiro LOF, Lopes SCA, Barros ALB, Magalhães-Paniago R, Malachias Â, Oliveira MC, et al. Phase behavior of dioleyphosphatidylethanolamine molecules in the presence of components of pH-sensitive liposomes and paclitaxel. Colloids Surf B Biointerfaces [Internet]. 2016;144:276–83. Available from: http://dx.doi.org/10.1016/j.colsurfb.2016.04.011
Khosravi Z, Sharma S, Farnoud AM. Submicron polymeric particles accelerate insulin fibrillation by surface adsorption. Biointerphases [Internet]. 2019;14(2):021001. Available from: http://dx.doi.org/10.1116/1.5083821
Rocha S, Thünemann AF, Pereira M do C, Coelho M, Möhwald H, Brezesinski G. Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem [Internet]. 2008;137(1):35–42. Available from: http://dx.doi.org/10.1016/j.bpc.2008.06.010
Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, et al. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A [Internet]. 2007;104(21):8691–6. Available from: http://dx.doi.org/10.1073/pnas.0701250104
Tian X, Chong Y, Ge C. Understanding the nano-bio interactions and the corresponding biological responses. Front Chem [Internet]. 2020;8:446. Available from: http://dx.doi.org/10.3389/fchem.2020.00446
Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O’Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev [Internet]. 2016;106:367–80. Available from: http://dx.doi.org/10.1016/j.addr.2016.06.006
Ickrath P, Wagner M, Scherzad A, Gehrke T, Burghartz M, Hagen R, et al. Time-dependent toxic and genotoxic effects of zinc oxide nanoparticles after long-term and repetitive exposure to human mesenchymal stem cells. Int J Environ Res Public Health [Internet]. 2017;14(12):1590. Available from: http://dx.doi.org/10.3390/ijerph14121590
Cristo D, Maguire L, Mc Quillan CM. Towards the identification of an in vitro tool for assessing the biological behavior of aerosol supplied nanomaterials. International Journal of Environmental Research and Public Health. 2018;(4).
Roy S, Deo KA, Singh KA, Lee HP, Jaiswal A, Gaharwar AK. Nano-bio interactions of 2D molybdenum disulfide. Adv Drug Deliv Rev [Internet]. 2022;187(114361):114361. Available from: http://dx.doi.org/10.1016/j.addr.2022.114361
Chaudhary K, Kumar K, Venkatesu P, Masram DT. In-depth understanding of a nano-bio interface between lysozyme and Au NP-immobilized N-doped reduced graphene oxide 2-D scaffolds. Nanoscale Adv [Internet]. 2020;2(5):2146–59. Available from: http://dx.doi.org/10.1039/d0na00155d
Tang Z, Xiao Y, Kong N, Liu C, Chen W, Huang X, et al. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharm Sin B [Internet]. 2021;11(11):3447–64. Available from: http://dx.doi.org/10.1016/j.apsb.2021.05.004
Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release [Internet]. 2013;169(1–2):112–25. Available from: http://dx.doi.org/10.1016/j.jconrel.2013.03.036
Li F, Du Y, Liu J, Sun H, Wang J, Li R, et al. Responsive assembly of upconversion nanoparticles for pH‐activated and near‐infrared‐triggered photodynamic therapy of deep tumors. Adv Mater [Internet]. 2018;30(35):1802808. Available from: http://dx.doi.org/10.1002/adma.201802808
Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology [Internet]. 2015;275(1):97–109. Available from: http://dx.doi.org/10.1148/radiol.14140690
Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci [Internet]. 2010;11(3):155–9. Available from: http://dx.doi.org/10.1038/nrn2786
Viles JH. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer’s, Parkinson’s and prion diseases. Coord Chem Rev [Internet]. 2012;256(19–20):2271–84. Available from: http://dx.doi.org/10.1016/j.ccr.2012.05.003
Wu H, Li F, Wang S, Lu J, Li J, Du Y, et al. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials [Internet]. 2018;151:66–77. Available from: http://dx.doi.org/10.1016/j.biomaterials.2017.10.018
Glantz MJ, LaFollette S, Jaeckle KA, Shapiro W, Swinnen L, Rozental JR, et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol [Internet]. 1999;17(10):3110–6. Available from: http://dx.doi.org/10.1200/JCO.1999.17.10.3110
Hong K, Drummond DC, Kirpotin D. Liposomes useful for drug delivery. United States patent US 8. inventors; Hermes Biosciences Inc, assignee. 2012;147.
Li Z, Zhang Y, Wurtz W. Characterization of nebulized liposomal amikacin (ArikaceTM) as a function of droplet size. Journal of aerosol medicine and pulmonary drug delivery. 2008;21(3):245–54.
Yarosh DB, Kibitel JT, Green LA, Spinowitz A. Enhanced unscheduled DNA synthesis in UV-irradiated human skin explants treated with T4N5 liposomes. J Invest Dermatol [Internet]. 1991;97(1):147–50. Available from: http://dx.doi.org/10.1111/1523-1747.ep12479314
Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine. 2007;2(3):277–88.
Sarris AH, Hagemeister F, Romaguera J, Rodriguez MA, McLaughlin P, Tsimberidou AM, et al. Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: early results of an ongoing phase II trial. Ann Oncol [Internet]. 2000;11(1):69–72. Available from: http://dx.doi.org/10.1023/a:1008348010437
Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine [Internet]. 2012;7:49–60. Available from: http://dx.doi.org/10.2147/IJN.S26766
Chen J, He CQ, Lin AH, Gu W, Chen ZP, Li W, et al. Thermosensitive liposomes with higher phase transition temperature for targeted drug delivery to tumor. Int J Pharm [Internet]. 2014;475(1–2):408–15. Available from: http://dx.doi.org/10.1016/j.ijpharm.2014.09.009
Wang Y, Cai R, Chen C. The nano-bio interactions of nanomedicines: Understanding the biochemical driving forces and redox reactions. Acc Chem Res [Internet]. 2019;52(6):1507–18. Available from: http://dx.doi.org/10.1021/acs.accounts.9b00126
Bhatt S, Punetha VD, Pathak R, Punetha M. Graphene in nanomedicine: A review on nano-bio factors and antibacterial activity. Colloids Surf B Biointerfaces [Internet]. 2023;226(113323):113323. Available from: http://dx.doi.org/10.1016/j.colsurfb.2023.113323
Mahmoudi M, Landry MP, Moore A, Coreas R. The protein corona from nanomedicine to environmental science. Nat Rev Mater [Internet]. 2023;1–17. Available from: http://dx.doi.org/10.1038/s41578-023-00552-2
Saeed S, Ud Din SR, Khan SU, Gul R, Kiani FA, Wahab A, et al. Nanoparticle: A promising player in nanomedicine and its theranostic applications for the treatment of cardiovascular diseases. Curr ProblCardiol [Internet]. 2023;48(5):101599. Available from: http://dx.doi.org/10.1016/j.cpcardiol.2023.101599
Han X. Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. International Journal of Nanomedicine. 2024:571–608.
Gong Z, Peng S, Cao J, Tan H, Zhao H, Bai J. Advances in the variations and biomedical applications of stimuli-responsive nanodrug delivery systems. Nanotechnology [Internet]. 2024;35(13). Available from: http://dx.doi.org/10.1088/1361-6528/ad170b
Nanotechnology-based delivery systems to overcome drug resistance in cancer. Medical Review.
Kashkooli M. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. Nanomedicine and Nanobiotechnology. 2024;16.
Hahn J. Bacterial therapies at the interface of synthetic biology and nanomedicine. Nature Reviews Bioengineering Published online. 2023:1–16.
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, et al. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med (N Y) [Internet]. 2023;4(3):147–67. Available from: http://dx.doi.org/10.1016/j.medj.2022.12.001
YELLANKI, S. K., S. MANOJ A, and M. T. “PREPARATION AND IN VITRO EVALUATION OF METOPROLOL-LOADED BOVINE SERUM ALBUMIN NANOPARTICLES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 14, no. 1, Jan. 2021, pp. 213-7, doi:10.22159/ajpcr.2021.v14i1.39738.
Sriramcharan P, Natarajan J, Raman R, Nagaraju G, Justin A, Senthil V. A review on Green-synthesis of cerium oxide nanoparticles: Focus on Central Nervous System disorders. Int J Appl Pharm [Internet]. 2022;94–102. Available from: http://dx.doi.org/10.22159/ijap.2022v14i4.44487.
Abdellatif MM, Ahmed SM, El-Nabarawi MA, Teaima M. Nano-delivery systems for enhancing oral bioavailability of drugs. Int J Appl Pharm [Internet]. 2023;13–9. Available from: http://dx.doi.org/10.22159/ijap.2023v15i1.46758
Narayana S, Ahmed MG, Nasrine A. Development of nano in situ gels of bevacizumab for the treatment of ocular angiogenesis: In vitro assessment of anti-angiogenesis activity and molecular docking analysis. Int J Appl Pharm [Internet]. 2023;201–13. Available from: http://dx.doi.org/10.22159/ijap.2023v15i4.47860
Zhang M, Lu H, Xie L, Liu X, Cun D, Yang M. Inhaled RNA drugs to treat lung diseases: Disease-related cells and nano-bio interactions. Adv Drug Deliv Rev [Internet]. 2023;115144. Available from: http://dx.doi.org/10.1016/j.addr.2023.115144
Saiding Q, Zhang Z, Chen S, Xiao F, Chen Y, Li Y, et al. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv Drug Deliv Rev [Internet]. 2023;(115116):115116. Available from: http://dx.doi.org/10.1016/j.addr.2023.115116
Liu J, Guo M, Chen C. Nano-bio interactions: A major principle in the dynamic biological processes of nano-assemblies. Adv Drug Deliv Rev [Internet]. 2022;186(114318):114318. Available from: http://dx.doi.org/10.1016/j.addr.2022.114318
Lin JHH, editor. Research article Nano-bio interfacial interactions determined the contact toxicity of nTiO2 to nematodes in various soils Science of The Total. 2022.
esearch article Multi-endpoint assessments for in vitro nano-bio interactions and uptake of biogenic phosphorus nanomaterials using HEK293 cells Environmental Science. 2023.
Review article Nano-bio interactions of 2D molybdenum disulfide Advanced Drug Delivery. 2022.
eview article Nano-bio convergence unveiled: Systematic review on quantum dots-protein interaction, their implications, and applications Biophysical ChemistryAvailable online 15. 2024.
Published
How to Cite
Issue
Section
Copyright (c) 2024 POONAM JOSHI, JYOTSANA SUYAL, TARUN PARASHAR, SHIVANI RAWAT
This work is licensed under a Creative Commons Attribution 4.0 International License.