A REVIEW ON RECENT ADVANCES ON STIMULI BASED SMART NANOMATERIALS FOR DRUG DELIVERY AND BIOMEDICAL APPLICATION

Authors

  • POONAM JOSHI Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun-247008, Uttarakhand, India https://orcid.org/0000-0003-0287-2438
  • NIDHI NAINWAL Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun-247008, Uttarakhand, India https://orcid.org/0000-0003-0117-1701
  • SRISHTI MORRIS Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun-247008, Uttarakhand, India
  • VIKAS JAKHMOLA Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun-247008, Uttarakhand, India

DOI:

https://doi.org/10.22159/ijap.2023v15i5.48186

Keywords:

Nanomedicine, Nano-bio interaction, Nanomaterials, Intelligent material, Nanoparticles, Stimuli-responsive

Abstract

The advancement of numerous interdisciplinary fields of science, engineering, and medicine has been integrated into the rapid growth of nanomedicine (NM) over the past few decades. Many aspects of NM need to be investigated, even though a few clinical successes of nanomaterials have significantly altered the landscape of disease diagnosis and treatment. One such topic is the complex interactions between NM and its post-administration chemical, physical, and biological interactions and how these interactions impact NM biological performance. Because of the increased prevalence of metabolic disorders, neurological illnesses, heart diseases, and cancer, as well as the hunt for effective therapies for these and other diseases, there is a larger demand for unique, inventive, and drug-delivery systems that can transport medications to the desired place. The many cutting-edge drug delivery systems are becoming more and more dependent on nanotechnology. In this review, developments in the field and talk about how nanomedicine interacts with the physical, chemical, and biological material, with a focus on biological stimuli research. We also show how nano-bio interaction can create a variety of multifunctional platforms of biomedical applications with a wide range. The potential difficulties and opportunities in the study of nano-bio interactions are also discussed. 

Downloads

Download data is not yet available.

References

Abidian MR, Kim DH, Martin DC. Conducting-polymer nanotubes for controlled drug release. Adv Mater. 2006;18(4):405-9. doi: 10.1002/adma.200501726, PMID 21552389.

Aguilar MR, Roman S. Introduction to smart polymers and their applications. In: Smart polymers and their applications. Woodhead Publishing; 2019.

Alibolandi M, Taghdisi SM, Ramezani P, Hosseini Shamili F, Farzad SA, Abnous K. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm. 2017;519(1-2):352-64. doi: 10.1016/j.ijpharm.2017.01.044, PMID 28126548.

Omoriyekomwan JE, Tahmasebi A, Dou J, Wang R, Yu J. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process Technol. 2021;214(106686):106686. Available from: http://dx.doi.org/10.1016/j.fuproc.2020.106686

Shi K, Yan J, Lester E, Wu T. Catalyst-free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass. Ind Eng Chem Res. 2014;53(39):15012–9. Available from: http://dx.doi.org/10.1021/ie503076n

Al-Nahain A, Lee SY, In I, Lee KD, Park SY. Triggered pH/redox responsive release of doxorubicin from prepared highly stable graphene with thiol grafted pluronic. Int J Pharm. 2013;450(1-2):208-17. doi: 10.1016/j.ijpharm.2013.04.053, PMID 23624082.

Antman Passig M, Shefi O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016;16(4):2567-73. doi: 10.1021/acs.nanolett.6b00131. PMID 26943183.

Arafa MG, El-Kased RF, Elmazar MM. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci Rep. 2018;8(1):13674. doi: 10.1038/s41598-018-31895-4, PMID 30209256.

Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol. 2014;10(9):1937-52. doi: 10.1166/jbn.2014.1953, PMID 25580097.

Bellotti E, Schilling AL, Little SR, Decuzzi P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: a review. J Control Release. 2021;329:16-35. doi: 10.1016/j.jconrel.2020.11.049, PMID 33259851.

Bertrand O, Gohy JF. Photo-responsive polymers: synthesis and applications. Polym Chem. 2017;8(1):52-73. doi: 10.1039/C6PY01082B.

Bhuchar N, Sunasee R, Ishihara K, Thundat T, Narain R. Degradable thermoresponsive nanogels for protein encapsulation and controlled release. Bioconjug Chem. 2012;23(1):75-83. doi: 10.1021/bc2003814, PMID 22171688.

Birgisson H, Pahlman L, Gunnarsson U, Glimelius B. Late adverse effects of radiation therapy for rectal cancer–a systematic overview. Acta Oncol. 2007;46(4):504-16. doi: 10.1080/02841860701348670, PMID 17497318.

Brown WF. Thermal fluctuations of a single-domain particle. Phys Rev. 1963;130(5):1677-86. doi: 10.1103/PhysRev.130.1677.

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. doi: 10.3390/pharmaceutics9020012, PMID 28346375.

Cai M, Leng M, Lu A, He L, Xie X, Huang L. Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids Surf B Biointerfaces. 2015;126:1-9. doi: 10.1016/j.colsurfb.2014.12.005. PMID 25531063.

Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules. 2007;8(6):1966-72. doi: 10.1021/bm070085x, PMID 17497921.

Chen F, Zhang J, Wang L, Wang Y, Chen M. Tumor pH(e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale. 2015;7(38):15763-79. doi: 10.1039/c5nr04612b, PMID 26355843.

Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647-57. doi: 10.1016/j.biomaterials.2013.01.084. PMID 23415642.

Cheng W, Kumar JN, Zhang Y, Liu Y. pH and redox-responsive poly(ethylene glycol) and cholesterol-conjugated poly(amido amine)s based micelles for controlled drug delivery. Macromol Biosci. 2014;14(3):347-58. doi: 10.1002/mabi.201300339, PMID 24106152.

Cheng W, Kumar JN, Zhang Y, Liu Y. pH-and redox-responsive self-assembly of amphiphilic hyperbranched poly(amido amine)s for controlled doxorubicin delivery. Biomater Sci. 2015;3(4):597-607. doi: 10.1039/c4bm00410h, PMID 26222420.

Chiang CS, Shen YS, Liu JJ, Shyu WC, Chen SY. Synergistic combination of multistage magnetic guidance and optimized ligand density in targeting a nanoplatform for enhanced cancer therapy. Adv Healthc Mater. 2016;5(16):2131-41. doi: 10.1002/adhm.201600479, PMID 27337051.

Colombo M, Staufenbiel S, Ruhl E, Bodmeier R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int J Pharm. 2017;521(1-2):156-66. doi: 10.1016/j.ijpharm.2017.02.030, PMID 28223247.

Creamer AE, Gao B, Wang S. Carbon dioxide capture using various metal oxyhydroxide–biochar composites. Chem Eng J. 2016;283:826-32. doi: 10.1016/j.cej.2015.08.037.

Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504-26. doi: 10.1016/j.jconrel.2016.06.016, PMID 27292178.

De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP. ChemInform abstract: polymeric multilayer capsules in drug delivery. ChemInform. 2011;42(3). doi: 10.1002/chin.201103271.

de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64(11):967-78. doi: 10.1016/j.addr.2012.01.002, PMID 22266127.

Delcea M, Mohwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev. 2011;63(9):730-47. doi: 10.1016/j.addr.2011.03.010, PMID 21463658.

Ding Y, Hao Y, Yuan Z, Tao B, Chen M, Lin C. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration. Biomater Sci. 2020;8(7):1840-54. doi: 10.1039/c9bm01924c, PMID 31967110.

Du J, Liu Z, Li Z, Han B, Sun Z, Huang Y. Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Mater Lett. 2005;59(4):456-8. doi: 10.1016/j.matlet.2004.09.044.

Du JZ, Sun TM, Song WJ, Wu J, Wang J. A tumor-acidity-activated charge-conversational nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew Chem Int Ed Engl. 2010;49(21):3621-6. doi: 10.1002/anie.200907210. PMID 20391548.

Dutz S, Zborowski M, Hafeli U, Schutt W. Preface to the special issue “Scientific and clinical applications of magnetic carriers” J Magn Magn Mater. 2021;525:(167667). doi: 10.1016/j.jmmm.2020.167667. PMID 36570041.

Elakkad YE, Mohamed SNS, Abuelezz NZ. Potentiating the cytotoxic activity of a novel simvastatin-loaded cubosome against breast cancer cells: insights on dual cell death via ferroptosis and apoptosis. Breast Cancer. 2021;13:675–89. doi: 10.2147/BCTT.S336712.

Elsherbini AAM, Saber M, Aggag M, El-Shahawy A, Shokier HAA. Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn Reson Imaging. 2011;29(2):272-80. doi: 10.1016/j.mri.2010.08.010, PMID 21145190.

Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed Engl. 2010;49(43):7987-91. doi: 10.1002/anie.201002849. PMID 20839199.

Flory PJ, Krigbaum WR. Thermodynamics of high polymer solutions. Annu Rev Phys Chem. 1951;2(1):383-402. doi: 10.1146/annurev.pc.02.100151.002123.

Gai C, Zhang F, Lang Q, Liu T, Peng N, Liu Z. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl Catal B. 2017;204:566-76. doi: 10.1016/j.apcatb.2016.12.005.

Gao C, Liu T, Dang Y, Yu Z, Wang W, Guo J. pH/redox responsive core cross-linked nanoparticles from thiolated carboxymethyl chitosan for in vitro release study of methotrexate. Carbohydr Polym. 2014;111:964-70. doi: 10.1016/j.carbpol.2014.05.012, PMID 25037437.

Gao L, Fei J, Zhao J, Cui W, Cui Y, Li J. pH and redox-responsive polysaccharide-based microcapsules with autofluorescence for biomedical applications. Chemistry. 2012;18(11):3185-92. doi: 10.1002/chem.201103584, PMID 22344618.

Gherasim O, Grumezescu AM, Grumezescu V, Iordache F, Vasile BS, Holban AM. Bioactive surfaces of polylactide and silver nanoparticles for the prevention of microbial contamination. Materials (Basel). 2020;13(3):768. doi: 10.3390/ma13030768, PMID 32046134.

Gil ES, Wu L, Xu L, Lowe TL. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Biomacromolecules. 2012;13(11):3533-41. doi: 10.1021/bm3008633, PMID 23066958.

Grimsdale AC, Mullen K. The chemistry of organic nanomaterials. Angew Chem Int Ed Engl. 2005;44(35):5592-629. doi: 10.1002/anie.200500805, PMID 16136610.

Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater. 2000;12(7):481-94. doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C.

Ha JH, Shin HH, Choi HW, Lim JH, Mo SJ, Ahrberg CD. AG nanoparticles cluster with PH-triggered reassembly in targeting antimicrobial applications. Adv Funct Mater. 2020;20(18):3354-98.

Li X, Zheng BY, Ke MR, Zhang Y, Huang JD, Yoon J. A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics. 2017;7(10):2746-56. doi: 10.7150/thno.18861, PMID 28819460.

Bonadies I, Di Cristo F, Valentino A, Peluso G, Calarco A, Di Salle A. PH-responsive resveratrol-loaded electrospun membranes for the prevention of implant-associated infections. Nanomaterials (Basel). 2020;10(6):1175. doi: 10.3390/nano10061175, PMID 32560209.

Jadhav M, Kalhapure RS, Rambharose S, Mocktar C, Singh S, Kodama T. Novel lipids with three C18-fatty acid chains and an amino acid head group for pH-responsive and sustained antibiotic delivery. Chem Phys Lipids. 2018;212:12-25. doi: 10.1016/j.chemphyslip.2017.12.007. PMID 29305156.

Kalidas S, Sumathi S. Mechanical, biocompatibility and antibacterial studies of gelatin/polyvinyl alcohol/silkfibre polymeric scaffold for bone tissue engineering. Heliyon. 2023;9(6):e16886. Available from: http://dx.doi.org/10.1016/j.heliyon.2023.e16886

Xuan J, Boissiere O, Zhao Y, Yan B, Tremblay L, Lacelle S. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir. 2012;28(47):16463-8. doi: 10.1021/la303946b, PMID 23145990.

Singh N, Romero M, Travanut A, Monteiro PF, Jordana Lluch E, Hardie KR. Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of pseudomonas aeruginosa biofilms in vitro and ex vivo. Biomater Sci. 2019;7(10):4099-111. doi: 10.1039/c9bm00773c, PMID 31355397.

Yu Q, Cho J, Shivapooja P, Ista LK, Lopez GP. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces. 2013;5(19):9295-304. doi: 10.1021/am4022279, PMID 24041191.

Hou G, Zhang L, Ng V, Wu Z, Schulz M. Review of recent advances in carbon nanotube biosensors based on field-effect transistors. Nano Life. 2016;06:1642006. Available from: http://dx.doi.org/10.1142/s179398441642006x

Sonawane SJ, Kalhapure RS, Jadhav M, Rambharose S, Mocktar C, Govender T. AB2-type amphiphilic block copolymer containing a pH-cleavable hydrazone linkage for targeted antibiotic delivery. Int J Pharm. 2020;575:(118948). doi: 10.1016/j.ijpharm.2019.118948. PMID 31837405.

Liu S, Yang J, Guo R, Deng L, Dong A, Zhang J. Facile fabrication of redox-responsive covalent organic framework nanocarriers for efficiently loading and delivering doxorubicin. Macromol Rapid Commun. 2020;41(4):e1900570. doi: 10.1002/marc.201900570, PMID 31894599.

Chen Z, Zhao M, Zhang J, Zhou K, Ren X, Mei X. Construction of injectable, pH sensitive, antibacterial, mineralized amino acid yolk-shell microspheres for potential minimally invasive treatment of bone infection. Int J Nanomedicine. 2018;13:3493-506. doi: 10.2147/IJN.S157463. PMID 29950831.

Mazloum Ardakani M, Barazesh B, Khoshroo A, Moshtaghiun M, Sheikhha MH. A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia. Bioelectrochemistry. 2018;121:38-45. doi: 10.1016/j.bioelechem.2017.12.010, PMID 29367018.

Salamatipour N, Hemmatinejad N, Bashari A. Synthesis of redox-light responsive alginate nano hydrogel to produce smart textile. Fibers Polym. 2019;20(4):690-7. doi: 10.1007/s12221-019-8905-0.

Hu Q, Wang Y, Xu L, Chen D, Cheng L. Transferrin conjugated pH-and redox-responsive poly(amidoamine) dendrimer conjugate as an efficient drug delivery carrier for cancer therapy. Int J Nanomedicine. 2020;15:2751-64. doi: 10.2147/IJN.S238536. PMID 32368053.

Xu X, Wang X, Luo W, Qian Q, Li Q, Han B. Triple cell-responsive nanogels for delivery of drug into cancer cells. Colloids Surf B Biointerfaces. 2018;163:362-8. doi: 10.1016/j.colsurfb.2017.12.047, PMID 29335198.

Han H, Wang J, Chen T, Yin L, Jin Q, Ji J. Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. J Colloid Interface Sci. 2017;507:217-24. doi: 10.1016/j.jcis.2017.07.047, PMID 28800445.

Han L, Tang C, Yin C. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials. 2015;60:42-52. doi: 10.1016/j.biomaterials.2015.05.001. PMID 25982552.

He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci. 2020;15(4):416-48. doi: 10.1016/j.ajps.2019.08.003. PMID 32952667.

Hoare T, Young S, Lawlor MW, Kohane DS. Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater. 2012;8(10):3596-605. doi: 10.1016/j.actbio.2012.06.013, PMID 22732383.

Hossain MK, Minami H, Hoque SM, Rahman MM, Sharafat MK, Begum MF. Mesoporous electromagnetic composite particles: electric current responsive release of biologically active molecules and antibacterial properties. Colloids Surf B Biointerfaces. 2019;181:85-93. doi: 10.1016/j.colsurfb.2019.05.040, PMID 31125922.

Hosseini Nassab N, Samanta D, Abdolazimi Y, Annes JP, Zare RN. Electrically controlled release of insulin using polypyrrole nanoparticles. Nanoscale. 2017;9(1):143-9. doi: 10.1039/c6nr08288b, PMID 27929180.

Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D. MMP2-targeting and redox-responsive pegylated chlorin e6 nanoparticles for cancer near-infrared imaging and photodynamic therapy. ACS Appl Mater Interfaces. 2016;8(2):1447-57. doi: 10.1021/acsami.5b10772, PMID 26638778.

Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci Bull (Beijing). 2019;64(22):1707-27. doi: 10.1016/j.scib.2019.09.021, PMID 36659785.

Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21. doi: 10.1016/j.jconrel.2014.04.018, PMID 24768792.

Hua MY, Liu HL, Yang HW, Chen PY, Tsai RY, Huang CY. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials. 2011;32(2):516-27. doi: 10.1016/j.biomaterials.2010.09.065. PMID 21030073.

Huggins ML. Some properties of solutions of long-chain compounds. J Phys Chem. 1942;46(1):151-8. doi: 10.1021/j150415a018.

Jafari S, Ahmadian E, Fard JK, Yari Khosroushahi A. Biomacromolecule based nanoscaffolds for cell therapy. J Drug Deliv Sci Technol. 2017;37:61-6. doi: 10.1016/j.jddst.2016.11.006.

Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN. Chemoresistance of cancer cells: requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics. 2018;8(19):5259-75. doi: 10.7150/thno.29098, PMID 30555545.

Liu Y, Yang F, Feng L, Yang L, Chen L, Wei G. In vivo retention of poloxamer-based in situ hydrogels for vaginal application in mouse and rat models. Acta Pharm Sin B. 2017;7(4):502-9. doi: 10.1016/j.apsb.2017.03.003. PMID 28752037.

Ma Y, Liang X, Tong S, Bao G, Ren Q, Dai Z. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv Funct Mater. 2013;23(7):815-22. doi: 10.1002/adfm.201201663.

Yang J, Lee J, Kang J, Oh SJ, Ko HJ, Son JH. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater. 2009;21(43):4339-42. doi: 10.1002/adma.200900334, PMID 26042940.

Wang D, Xu Z, Yu H, Chen X, Feng B, Cui Z. Treatment of metastatic breast cancer by a combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials. 2014;35(29):8374-84. doi: 10.1016/j.biomaterials.2014.05.094, PMID 24996756.

You J, Shao R, Wei X, Gupta S, Li C. Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small. 2010;6(9):1022-31. doi: 10.1002/smll.201000028, PMID 20394071.

Huang HL, Lu PH, Yang HC, Lee GD, Li HR, Liao KC. Fiber-optic triggered release of liposome in vivo: implication of personalized chemotherapy. Int J Nanomedicine. 2015;10:5171-84. doi: 10.2147/IJN.S85915, PMID 26316748.

Starkewolf ZB, Miyachi L, Wong J, Guo T. X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem Commun (Camb). 2013;49(25):2545-7. doi: 10.1039/c3cc38100e, PMID 23423224.

Liu F, Lou J, Hristov D. X-ray responsive nanoparticles with triggered release of nitrite, a precursor of reactive nitrogen species, for enhanced cancer radiosensitization. Nanoscale. 2017;9(38):14627-34. doi: 10.1039/c7nr04684g, PMID 28936509.

Suzuki K, Matsui S, Ochiai Y. Sub-half-micron lithography for ULSIs. Cambridge University Press; 2000.

Barhoumi A, Wang W, Zurakowski D, Langer RS, Kohane DS. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014;14(7):3697-701. doi: 10.1021/nl403733z, PMID 24884872.

Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078-81. doi: 10.1126/science.277.5329.1078, PMID 9262471.

Huang P, Lin J, Li W, Rong P, Wang Z, Wang S. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew Chem Int Ed Engl. 2013;52(52):13958-64. doi: 10.1002/anie.201308986, PMID 24318645.

Fan NC, Cheng FY, Ho JAA, Yeh CS. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew Chem Int Ed Engl. 2012;51(35):8806-10. doi: 10.1002/anie.201203339, PMID 22833461.

Zhu JY, Wan SS, Zheng DW, Lei Q, Zhuo RX, Feng J. Propelled transnuclear gene transport achieved through intracellularly redox-responsive and acidity-accelerative decomposition of supramolecular florescence-quenchable vectors. ACS Appl Mater Interfaces. 2017;9(1):255-65. doi: 10.1021/acsami.6b14730, PMID 27966867.

Shaikh MO, Srikanth B, Zhu PY, Chuang CH. Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors (Basel). 2019;19(18). doi: 10.3390/s19183990, PMID 31527396.

Liu J, Kim YS, Richardson CE, Tom A, Ramakrishnan C, Birey F. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science. 2020;367(6484):1372-6. doi: 10.1126/science.aay4866. PMID 32193327.

Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1):262. doi: 10.1186/s12951-022-01477-8, PMID 35672712.

Junka AF, Rakoczy R, Szymczyk P, Bartoszewicz M, Sedghizadeh PP, Fijałkowski K. Application of rotating magnetic fields increase the activity of antimicrobials against wound biofilm pathogens. Sci Rep. 2018;8(1):167. doi: 10.1038/s41598-017-18557-7, PMID 29317719.

Kanaoujiya R, Saroj SK, Srivastava S, Chaudhary MK. Renewable polysaccharide and biomedical application of nanomaterials. J Nanomater. 2022;2022:1-16. doi: 10.1155/2022/1050211.

Kiyohara K, Shioyama H, Asaka K. Thermodynamics of nano-porous carbon materials as adsorbents and electrochemical double-layer capacitor electrodes-implications from computer simulation studies. Carbon. 2014;76:469-70. doi: 10.1016/j.carbon.2014.04.030.

Kondo A, Fukuda H. Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J Ferment Bioeng. 1997;84(4):337-41, doi: 10.1016/S0922-338X(97)89255-0.

Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S. Nanomaterials for neural interfaces. Adv Mater. 2009;21(40):3970-4004. doi: 10.1002/adma.200801984.

Kumar R, Singh R, Hui D, Feo L, Fraternali F. Graphene as biomedical sensing element: state of art review and potential engineering applications. Composites Part B: Engineering. 2018;134:193-206. doi: 10.1016/j.compositesb.2017.09.049.

Landon CD, Park JY, Needham D, Dewhirst MW. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of Low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J. 2011;3(1):38-64. doi: 10.2174/1875933501103010038, PMID 23807899.

Lettieri Barbato D, Aquilano K. Pushing the limits of cancer therapy: the nutrient game. Front Oncol. 2018;8:148. doi: 10.3389/fonc.2018.00148, PMID 29868472.

Li N, Cai H, Jiang L, Hu J, Bains A, Hu J. Enzyme-sensitive and amphiphilic pegylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces. 2017;9(8):6865-77. doi: 10.1021/acsami.6b15505, PMID 28112512.

Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci. 2020;15(3):311-25. doi: 10.1016/j.ajps.2019.06.003. PMID 32636949.

Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J. α-amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Appl Mater Interfaces. 2017;9(22):19215-30. doi: 10.1021/acsami.7b04066, PMID 28513132.

Ling K, Wu H, Neish AS, Champion JA. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release. 2019;295:174-86. doi: 10.1016/j.jconrel.2018.12.017, PMID 30557649.

Liu N, Tan Y, Hu Y, Meng T, Wen L, Liu J. A54 peptide modified and redox-responsive glucolipid conjugate micelles for intracellular delivery of doxorubicin in hepatocarcinoma therapy. ACS Appl Mater Interfaces. 2016;8(48):33148-56. doi: 10.1021/acsami.6b09333, PMID 27934140.

Liu R, Fraylich M, Saunders BR. Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci. 2009;287(6):627-43. doi: 10.1007/s00396-009-2028-x.

Liu Y, Yang F, Feng L, Yang L, Chen L, Wei G. In vivo retention of poloxamer-based in situ hydrogels for vaginal application in mouse and rat models. Acta Pharm Sin B. 2017;7(4):502-9. doi: 10.1016/j.apsb.2017.03.003. PMID 28752037.

Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA. Generation of polymerosomes from double-emulsions. Langmuir. 2005;21(20):9183-6. doi: 10.1021/la050797d, PMID 16171349.

del Mercato LL, Rivera-Gil P, Abbasi AZ, Ochs M, Ganas C, Zins I. LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale. 2010;2(4):458-67. doi: 10.1039/b9nr00341j, PMID 20644746.

Lovell JF, Chen J, Jarvi MT, Cao WG, Allen AD, Liu Y. FRET quenching of photosensitizer singlet oxygen generation. J Phys Chem B. 2009;113(10):3203-11. doi: 10.1021/jp810324v, PMID 19708269.

Lund PA, De Biase D, Liran O, Scheler O, Mira NP, Cetecioglu Z. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front Microbiol. 2020;11:556140. doi: 10.3389/fmicb.2020.556140, PMID 33117305.

Cortese B, D’Amone S, Testini M, Ratano P, Palama IE. Hybrid clustered nanoparticles for chemo-antibacterial combinatorial cancer therapy. Cancers (Basel). 2019;11(9):1338. doi: 10.3390/cancers11091338, PMID 31510037.

Zhang CY, Gao J, Wang Z. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management. Adv Mater. 2018;30(43):e1803618. doi: 10.1002/adma.201803618, PMID 30203430.

Yang S, Han X, Yang Y, Qiao H, Yu Z, Liu Y. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular staphylococcus aureus and associated infection. ACS Appl Mater Interfaces. 2018;10(17):14299-311. doi: 10.1021/acsami.7b15678, PMID 29633833.

Marin JJ, Romero MR, Blazquez AG, Herraez E, Keck E, Briz O. Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours. Anticancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anticancer Agents). 2009;9:162-84.

Mavuso S, Choonara YE, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD. A dual pH/Redox responsive copper-ligand nanoliposome bioactive complex for the treatment of chronic inflammation. Int J Pharm. 2016;509(1-2):348-59. doi: 10.1016/j.ijpharm.2016.05.069, PMID 27269194.

Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournes C, Wattiaux A. Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir. 2007;23(13):7385-91. doi: 10.1021/la062527g, PMID 17503854.

Su FY, Chen J, Son HN, Kelly AM, Convertine AJ, West TE. Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections. Biomater Sci. 2018;6(7):1976-85. doi: 10.1039/c8bm00282g, PMID 29850694.

Oh JM, Choi SJ, Lee GE, Kim JE, Choy JH. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chem Asian J. 2009;4(1):67-73. doi: 10.1002/asia.200800290, PMID 18988236.

Perlman O. Azhari H. MRI and ultrasound imaging of nanoparticles for medical diagnosis. In: Nanotechnology characterization tools for biosensing and medical diagnosis. Berlin, Heidelberg: Springer Berlin Heidelberg; 2018. p. 333-65.

Pham SH, Choi Y, Choi J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics. 2020;12(7):630. doi: 10.3390/pharmaceutics12070630, PMID 32635539.

Poß M, Tower RJ, Napp J, Appold LC, Lammers T, Alves F. Multimodal [GdO]+ [ICG]−nanoparticles for optical, photoacoustic, and magnetic resonance imaging. Chem Mater. 2017;29(8):3547-54. doi: 10.1021/acs.chemmater.6b05406.

Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M. Targeted temperature-sensitive magnetic liposomes for thermo-chemotherapy. J Control Release. 2010;142(1):108-21. doi: 10.1016/j.jconrel.2009.10.002. PMID 19819275.

Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle-based treatment for wound healing. J Drug Deliv Sci Technol. 2018;44:421-30. doi: 10.1016/j.jddst.2018.01.009.

Raoufi E, Bahramimeimandi B, Salehi Shadkami M, Chaosri P, Mozafari MR. Methodical design of viral vaccines based on avant-garde nanocarriers: a multi-domain narrative review. Biomedicines. 2021;9(5). doi: 10.3390/biomedicines9050520, PMID 34066608.

Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O. Somatic mutations drive distinct imaging phenotypes in lung Cancer Somatic. Cancer Res. 2017;77(14):3922-30. doi: 10.1158/0008-5472.CAN-17-0122, PMID 28566328.

Rossi LM, Costa NJS, Silva FP, Wojcieszak R. ChemInform abstract: magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. ChemInform. 2014;45(32). doi: 10.1002/chin.201432233.

Roy D, Brooks WLA, Sumerlin BS. New directions in thermoresponsive polymers. Chem Soc Rev. 2013;42(17):7214-43. doi: 10.1039/c3cs35499g, PMID 23450220.

Sahle FF, Giulbudagian M, Bergueiro J, Lademann J, Calderon M. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale. 2017;9(1):172-82. doi: 10.1039/c6nr06435c, PMID 27905610.

Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today. 2018;23(5):992-1006. doi: 10.1016/j.drudis.2018.04.003. PMID 29653291.

Sahle FF, Metz H, Wohlrab J, Neubert RHH. Polyglycerol fatty acid ester surfactant-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterisation, in vitro release and penetration investigation. Eur J Pharm Biopharm. 2012;82(1):139-50. doi: 10.1016/j.ejpb.2012.05.017, PMID 22691416.

Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. Life. 2022;15(1):843-69. doi: 10.1080/26895293.2022.2103592.

Sharma HS, Ali SF, Dong W, Tian ZR, Patnaik R, Patnaik S. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann N Y Acad Sci. 2007;1122(1):197-218. doi: 10.1196/annals.1403.014, PMID 18077574.

Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly (β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. Pharm Res. 2005;22(12):2107-14. doi: 10.1007/s11095-005-8343-0, PMID 16254763.

Stejskalova A, Kiani MT, Almquist BD. Programmable biomaterials for dynamic and responsive drug delivery. Exp Biol Med (Maywood). 2016;241(10):1127-37. doi: 10.1177/1535370216649445, PMID 27190245.

Stover TC, Kim YS, Lowe TL, Kester M. Thermoresponsive and biodegradable linear-dendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug. Biomaterials. 2008;29(3):359-69. doi: 10.1016/j.biomaterials.2007.09.037. PMID 17964645.

Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. 2019;9(9):470. doi: 10.3390/biom9090470, PMID 31509976.

Sun S, Liang S, Xu WC, Xu G, Wu S. Photoresponsive polymers with multi-azobenzene groups. Polym Chem. 2019;10(32):4389-401. doi: 10.1039/C9PY00793H.

Sun S, Mendes P, Critchley K, Diegoli S, Hanwell M, Evans SD. Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett. 2006;6(3):345-50. doi: 10.1021/nl052130h, PMID 16522020.

Svirskis D, Travas Sejdic J, Rodgers A, Garg S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J Control Release. 2010;146(1):6-15. doi: 10.1016/j.jconrel.2010.03.023, PMID 20359512.

Tefas LR, Toma I, Sesarman A, Banciu M, Jurj A, Berindan Neagoe I. Co-delivery of gemcitabine and salinomycin in pegylated liposomes for enhanced anticancer efficacy against colorectal cancer. J Liposome Res. 2022:1-17. doi: 10.1080/08982104.2022.2153139, PMID 36472146.

Thamphiwatana S, Gao W, Pornpattananangkul D, Zhang Q, Fu V, Li J. Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Mater Chem B. 2014;2(46):8201-7. doi: 10.1039/C4TB01110D, PMID 25544886.

Tsuda T, Kaibori M, Hishikawa H, Nakatake R, Okumura T, Ozeki E. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma. PLOS ONE. 2017;12(8):e0183527. doi: 10.1371/journal.pone.0183527. PMID 28859104.

Vargas B, Cuesta Frau D, Gonzalez Lopez P, Fernandez Cotarelo MJ, Vazquez Gomez O, Colas A. Discriminating Bacterial Infection from other causes of fever using body temperature entropy analysis. Entropy (Basel). 2022;24(4):510. doi: 10.3390/e24040510, PMID 35455174.

Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology. 2019;17(1):82. doi: 10.1186/s12951-019-0514-y, PMID 31291960.

Wang YY, Chen YK, Hu CS, Xiao LY, Huang WL, Chi TC. MAL-PDT inhibits oral precancerous cells and lesions via autophagic cell death. Oral Dis. 2019;25(3):758-71. doi: 10.1111/odi.13036, PMID 30620118.

Xu B, Dou H, Tao K, Sun K, Ding J, Shi W. "Two-in-one” fabrication of Fe3O4/MePEG-PLA composite nanocapsules as a potential ultrasonic/MRI dual contrast agent. Langmuir. 2011;27(19):12134-42. doi: 10.1021/la202096x, PMID 21863846.

Xu C, Song RJ, Lu P, Chen JC, Zhou YQ, Shen G. pH-triggered charge-reversal and redox-sensitive drug-release polymer micelles codeliver doxorubicin and triptolide for prostate tumor therapy. Int J Nanomedicine. 2018;13:7229-49. doi: 10.2147/IJN.S182197. PMID 30510415.

Yadav A, Gupta A. Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing. Photodermatol Photoimmunol Photomed. 2017;33(1):4-13. doi: 10.1111/phpp.12282, PMID 27943458.

Yang B, Li Y, Sun X, Meng X, Chen P, Liu N. A pH-responsive drug release system based on doxorubicin conjugated amphiphilic polymer coated quantum dots for tumor cell targeting and tracking: PH-responsive drug release system for tumor cell targeting and tracking. J Chem Technol Biotechnol. 2013;88(12):2169–-75. doi: 10.1002/jctb.4081.

Yu B, Song N, Hu H, Chen G, Shen Y, Cong H. A degradable triple temperature-, pH-, and redox-responsive drug system for cancer chemotherapy: degradable triple temperature-, ph-, and redox-responsive drug system for cancer chemotherapy. J Biomed Mater Res A. 2018;106(12):3203-10. doi: 10.1002/jbm.a.36515. PMID 30242956.

Zhang P, Ye J, Liu E, Sun L, Zhang J, Lee SJ. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Front Chem Sci Eng. 2017;11(4):529-36. doi: 10.1007/s11705-017-1645-z.

Zhang XX, Eden HS, Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release. 2012;159(1):2-13. doi: 10.1016/j.jconrel.2011.10.023, PMID 22056916.

Zhang Y, Yang M, Park JH, Singelyn J, Ma H, Sailor MJ. A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small. 2009;5(17):1990-6. doi: 10.1002/smll.200900520, PMID 19554564.

Zhu J, Chen M, Qu H, Luo Z, Wu S, Colorado HA. Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ Sci. 2013;6(1):194-204. doi: 10.1039/C2EE23422J.

Mohan L, Anandan C, Rajendran N. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan. Int J Biol Macromol. 2016;93(B):1633-8. doi: 10.1016/j.ijbiomac.2016.04.034, PMID 27086292.

Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of state of the art. European Journal of Pharmaceutics and Biopharmaceutics. 2000;50(1):161-77. doi: 10.1016/s0939-6411(00)00087-4, PMID 10840199.

Murdan S. Electro-responsive drug delivery from hydrogels. J Control Release. 2003;92(1-2):1-17. doi: 10.1016/s0168-3659(03)00303-1, PMID 14499181.

Najlah M, Said Suliman A, Tolaymat I, Kurusamy S, Kannappan V, Elhissi AMA. Development of injectable PEGpegylated liposome encapsulating disulfiram for colorectal cancer treatment. Pharmaceutics. 2019;11(11):610. doi: 10.3390/pharmaceutics11110610, PMID 31739556.

Mena Giraldo P, Perez Buitrago S, Londono Berrio M, Ortiz Trujillo IC, Hoyos Palacio LM, Orozco J. Photosensitive nanocarriers for specific delivery of cargo into cells. Sci Rep. 2020;10(1):2110. doi: 10.1038/s41598-020-58865-z, PMID 32034197.

Sharma P, Sharma A, Gupta A. Nanosponges: as a dynamic drug delivery approach for targeted delivery. Int J App Pharm. 2023:1-11. doi: 10.22159/ijap.2023v15i3.46976.

Bhange MA, Pethe AM, Jadhav A, Kanadje H. Formulation and development of Gallen gum loaded self-assembled mixed micelles system based on flavonoid phospholipid complex. Int J App Pharm. 2023;15(3):123-31. doi: 10.22159/ijap.2023v15i3.46795.

Rosalina AI, Iskandarsyah, Sagita SE, Sagita E. Placenta extract-loaded novasome significantly improved hair growth in a rat in vivo model. Int J App Pharm. 2023;15(3):138-45. doi: 10.22159/ijap.2023v15i3.47459.

Sindhuri GV, Mariappan G, Subramanian S. Formulation and evaluation of epigallocatechin gallate and berberine-loaded chitosan nanoparticles. Int J App Pharm. 2023;15(3):178-89. doi: 10.22159/ijap.2023v15i3.47410.

Ramana EV, Naseem. Development, characterization and antibacterial properties of silver nanoparticles loaded sodium alginate/xanthan gum microbeads for drug delivery applications. Int J App Pharm. 2023;15(3):278-84. doi: 10.22159/ijap.2023v15i3.47028.

Huang HL, Lu PH, Yang HC, Lee GD, Li HR, Liao KC. Fiber-optic triggered release of liposome in vivo: implication of personalized chemotherapy. Int J Nanomedicine. 2015;10:5171-84. doi: 10.2147/IJN.S85915. PMID 26316748.

Franco MS, Gomes ER, Roque MC, Oliveira MC. Triggered drug release from liposomes: exploiting the outer and inner tumor environment. Front Oncol. 2021;11:623760. doi: 10.3389/fonc.2021.623760, PMID 33796461.

Wenjie EM, Goldys W. Light-induced liposomes for cancer therapeutics. Prog Lipid Res. 2020;79. https://doi.org/10.1016/j.plipres.2020.101052

Yu J, Chu X, Hou Y. ChemInform abstract: stimuli-responsive cancer therapy based on nanoparticles. Chem Inform. 2014;45(45). doi: 10.1002/chin.201445291.

Yu M, Ji N, Wang Y, Dai L, Xiong L, Sun Q. Starch-based nanoparticles: Sstimuli responsiveness, toxicity, and interactions with food components. Compr Rev Food Sci Food Saf. 2021;20(1):1075-100. doi: 10.1111/1541-4337.12677, PMID 33443809.

Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev. 2015;95:40-9. doi: 10.1016/j.addr.2015.09.009. PMID 26434537.

Lajunen T, Viitala L, Kontturi LS, Laaksonen T, Liang H, Vuorimaa Laukkanen E. Light-induced cytosolic drug delivery from liposomes with gold nanoparticles. J Control Release. 2015;203:85–98. http://dx.doi.org/10.1016/j.jconrel.2015.02.028.

Lajunen T, Kontturi LS, Viitala L, Manna M, Cramariuc O, Rog T. Indocyanine green-loaded liposomes for light-triggered drug release. Mol Pharm. 2016;13(6):2095–107. http://dx.doi.org/10.1021/acs.molpharmaceut.6b00207

Published

07-09-2023

How to Cite

JOSHI, P., NAINWAL, N., MORRIS, S., & JAKHMOLA, V. (2023). A REVIEW ON RECENT ADVANCES ON STIMULI BASED SMART NANOMATERIALS FOR DRUG DELIVERY AND BIOMEDICAL APPLICATION. International Journal of Applied Pharmaceutics, 15(5), 48–59. https://doi.org/10.22159/ijap.2023v15i5.48186

Issue

Section

Review Article(s)