PREPARATION, CHARACTERIZATION, AND TOXICITY STUDY OF ANDROGRAPHIS PANICULATA ETHANOL EXTRACT POLY-LACTIC-CO-GLYCOLIC ACID (PLGA) NANOPARTICLES IN RAW 264.7 CELLS

Authors

  • DHADHANG WAHYU KURNIAWAN Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Jl. dr. Suparno Kampus Unsoed Karangwangkal Purwokerto, Central Java-53123, Indonesia. Graduate School, Universitas Jenderal Soedirman, Jl. Dr. Suparno Kampus Unsoed Karangwangkal Purwokerto, Central Java-53123, Indonesia. Research Centre for Vaccine and Drug, National Research and Innovation Agency (BRIN), Building 610, lAPTIAB-Puspiptek Area, Setu, Tangerang Selatan, Banten-15314, Indonesia https://orcid.org/0000-0003-4843-3756
  • NUR SIGNA AINI GUMILAS Faculty of Medicine, Universitas Jenderal Soedirman, Jl. dr. Gumbreg no. 1 Purwokerto, Central Java-53147, Indonesia https://orcid.org/0000-0002-9904-2133
  • ARRAMEL Nano Center Indonesia, Jl. Raya Puspiptek, No A-12, Setu, Setu Tangerang Selatan, Banten Indonesia https://orcid.org/0000-0003-4125-6099
  • HARTATI Nano Center Indonesia, Jl. Raya Puspiptek, No A-12, Setu, Setu Tangerang Selatan, Banten Indonesia
  • DODY NOVRIAL Faculty of Medicine, Universitas Jenderal Soedirman, Jl. dr. Gumbreg no. 1 Purwokerto, Central Java-53147, Indonesia https://orcid.org/0000-0002-3807-852X
  • TARWADI Research Centre for Vaccine and Drug, National Research and Innovation Agency (BRIN), Building 610, LAPTIAB - Puspiptek Area, Setu, Tangerang Selatan, Banten-15314, Indonesia https://orcid.org/0000-0002-9915-6739

DOI:

https://doi.org/10.22159/ijap.2024v16i4.50798

Keywords:

A. paniculata, Ethanol extract, Nanoparticles, PLGA, Raw cells 264.7

Abstract

Objective: This research aims to prepare and characterize Andrographis paniculata ethanol extract nanoparticles using Poly-Lactic-co-Glycolic Acid (PLGA) and test the toxicity of the nanoparticles in vitro in Raw 264.7 macrophage cells.

Methods: A. paniculata ethanol extract-PLGA nanoparticles were prepared using the solvent evaporation method. The nanoparticles were characterized for their particle size and particle size distribution using a Particle Size Analyzer (PSA) and their zeta potential was measured using a zetasizer. The morphology of the nanoparticles was observed using a Scanning Electron Microscope (SEM). To confirm whether the ethanol extract of A. paniculata was loaded in the PLGA nanoparticles, it was determined using Fourier Transform Infra-Red (FTIR) and Raman spectroscopy. In vitro toxicity test of A. paniculata ethanol extract nanoparticles in Raw cells macrophage 264.7 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay.

Results: After measurements using PSA, A. paniculata ethanol extract nanoparticles had an average size of 466.4 ± 31.6 nm, a Polydispersity Index (PdI) of 0.365 ± 0.03, and a zeta potential of-2.42 ± 0.91 mV. The results of observations using FTIR on A. paniculata ethanol extract nanoparticles show peaks at wavenumbers 712 cm-1, 749 cm-1, 865 cm-1, 955 cm-1, 1093 cm-1, 2949 cm-1, 1757 cm-1, and 3390 cm-1. This proves that A. paniculata ethanol extract is loaded into the nanoparticles. The results of in vitro toxicity tests using Raw macrophage 264.7 cells showed that the ethanol extract of A. paniculata-PLGA nanoparticles was not toxic.

Conclusion: PLGA-based A. paniculata ethanol extract nanoparticles have good characteristics as a nanotechnology-based preparation and are non-toxic when tested in vitro in Raw macrophage cells 264.7.

Downloads

Download data is not yet available.

References

Geetha I, Catherine P, Alexander S. Antibacterial activity of andrographis paniculata extracts. Pharma Innov J. 2017;6(5):1-4.

Kemenkes RI. Peraturan Menteri Kesehatan Republik Indonesia nomor 88 tahun 2013 tentang rencana induk pengembangan bahan baku obat tradisional. Jakarta: Kemenkes RI; 2013.

Hossain MS, Urbi Z, Sule A, Hafizur Rahman KM. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. Scientific World Journal. 2014;2014:274905. doi: 10.1155/2014/274905, PMID 25950015.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: 10.1017/jns.2016.41, PMID 28620474.

Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr. 2019;59Suppl1:S17-29. doi: 10.1080/10408398.2018.1501657, PMID 30040451.

Nagalekshmi R, Menon A, Chandrasekharan DK, Nair CK. Hepatoprotective activity of andrographis paniculata and swertia chirayita. Food Chem Toxicol. 2011;49(12):3367-73. doi: 10.1016/j.fct.2011.09.026, PMID 21983487.

Mishra SK, Sangwan NS, Sangwan RS. Andrographis paniculata (Kalmegh): a review. Pharmacogn Rev. 2007;1(2):283-98.

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. doi: 10.1016/j.arabjc.2017.05.011.

Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trac Trends Anal Chem. 2016;80:30-40. doi: 10.1016/j.trac.2015.06.014.

Danhier F, Ansorena E, Silva JM, Coco R, le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505-22. doi: 10.1016/j.jconrel.2012.01.043, PMID 22353619.

Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argemi J, Bataller R. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. J Control Release. 2018;288:227-38. doi: 10.1016/j.jconrel.2018.09.004, PMID 30219279.

Kemenkes RI. Farmakope herbal Indonesia edisi II tahun 2017. Jakarta: Kemenkes RI; 2017.

Kurniawan DW, Booijink R, Pater L, Wols I, Vrynas A, Storm G. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release. 2020;328:640-52. doi: 10.1016/j.jconrel.2020.09.041, PMID 32979454.

Sun SB, liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med. 2015;8(10):19670-81. PMID 26770631.

Hu F, liu W, Yan L, Kong F, Wei K. Optimization and characterization of poly(lactic-co-glycolic acid) nanoparticles loaded with astaxanthin and evaluation of anti-photodamage effect in vitro. R Soc Open Sci. 2019;6(10):191184. doi: 10.1098/rsos.191184, PMID 31824727.

Carmagnola I, Chiono V, Ruocco G, Scalzone A, Gentile P, Taddei P. PLGA membranes functionalized with gelatin through biomimetic mussel-inspired strategy. Nanomaterials (Basel). 2020;10(11). doi: 10.3390/nano10112184, PMID 33147761.

Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23). doi: 10.3390/ijms222312827, PMID 34884632.

Cai L. Thin layer chromatography. CP Essential Lab Tech. 2014;8(1). doi: 10.1002/9780470089941.et0603s08.

Zielinska A, Carreiro F, Oliveira AM, Neves A, Pires B, Venkatesh DN. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16). doi: 10.3390/molecules25163731, PMID 32824172.

Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol. 2013;87(6):1075-86. doi: 10.1007/s00204-012-0938-8, PMID 22983807.

Santos PC, Bretz GP. Evaluation of polymeric PLGA nanoparticles conjugated to curcumin for use in aPDT. Pietra RCCdS, Cruz RC, Melo CN, Rodrigues lB. Braz J Pharm Sci. 2017;53(2).

Sundaramoorthy Sangeetha RA, Sathia Velu A. Phytochemical testing, antioxidant activity, HPTLC and FTIR analysis of antidiabetic plants nigella sativa, eugenia jambolana, andrographis paniculata and gymnema sylvestre. Res J Biotechnol. 2014;9(9):65-72.

Roy P, Das S, Auddy RG, Mukherjee A. Engineered andrographolide nanosystems for smart recovery in hepatotoxic conditions. Int J Nanomedicine. 2014;9:4723-35. doi: 10.2147/IJN.S65262, PMID 25336950.

Gala U, Chauhan H. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert Opin Drug Discov. 2015;10(2):187-206. doi: 10.1517/17460441.2015.981522.

Desai AS, Ashok A, Edis Z, Bloukh SH, Gaikwad M, Patil R. Meta-analysis of cytotoxicity studies using machine learning models on physical properties of plant extract-derived silver nanoparticles. Int J Mol Sci. 2023;24(4). doi: 10.3390/ijms24044220, PMID 36835640.

Abdulaziz Bardi D, Halabi MF, Hassandarvish P, Rouhollahi E, Paydar M, Moghadamtousi SZ. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats. Plos One. 2014;9(10):e109424. doi: 10.1371/journal.pone.0109424, PMID 25280007.

Published

07-07-2024

How to Cite

KURNIAWAN, D. W., AINI GUMILAS, N. S., ARRAMEL, HARTATI, NOVRIAL, D., & TARWADI. (2024). PREPARATION, CHARACTERIZATION, AND TOXICITY STUDY OF ANDROGRAPHIS PANICULATA ETHANOL EXTRACT POLY-LACTIC-CO-GLYCOLIC ACID (PLGA) NANOPARTICLES IN RAW 264.7 CELLS. International Journal of Applied Pharmaceutics, 16(4), 78–83. https://doi.org/10.22159/ijap.2024v16i4.50798

Issue

Section

Original Article(s)