MOLECULAR DOCKING OF BIFLAVONOIDS FROM GENUS ARAUCARIA AS DENV NS5 RNA-DEPENDENT RNA POLYMERASE INHIBITOR USING YASARA AND PLANTS PROGRAMS
DOI:
https://doi.org/10.22159/ijap.2024v16i5.50833Keywords:
Genus araucaria, Biflavonoids, In silico with YASARA structure and PLANTS programs, 7,4',7''-tri-O-methylagathisflavone (BF3)Abstract
Objective: This study aimed to screen 23 biflavonoids (23 BF) from the Araucaria genus to identify the most promising compound for anti-dengue fever antivirus treatment using in silico techniques with yet another scientific artificial reality application (YASARA) Structure and the Protein-Ligand ANT System (PLANTS) programs.
Methods: Predictions of conserved amino acids and potential pockets of the virus dengue NS5 RNA-dependent RNA polymerase (DENV NS5 RdRp) (PDB ID: 5K5M) were examined, while co-crystal ligands were prepared along with 23 biflavonoids. Molecular docking of ligands on the target protein was carried out using the YASARA Structure and PLANTS programs. The interactions were visualized with LigPlot+, Pymol, and Discovery Studio 2021 Client in. pdb format.
Results: The results showed that based on the molecular docking of 23 biflavonoids from the Araucaria genus against the selected DENV NS5 RdRp, the top nine compounds with great potential as antiviral drug candidates were identified. Among these compounds, 7,4’,7’’-tri-O-methylagathisflavone (BF3) was distinct as the best choice based on the analysis conducted using the YASARA Structure and PLANTS programs. Other compounds, including 7,4',4'''-tri-O-methylamentoflavone (BF10), 4',4'''-di-O-methylamentoflavone (BF11), 7,4',7'',4'''-tetra-O-methylamentoflavone (BF12), 7''-O-methylamentoflavone (BF13), and 7,7''-di-O-methylamentoflavone (BF14), were selected through the YASARA Structure program, while 7,4',7'',4'''-tetra-O-methylagathisflavone (BF8) and 7''-O-methylrobustaflavone (BF23) were selected from the PLANTS program. All compounds had lower free energy (∆G), dissociation constant (Kd), and docking scores compared to the reference ligand, balapiravir. Hydrogen and hydrophobic bonds were formed with the protein through conserved amino acid residues, the N-pocket, and the catalytic Gly-Asp-Asp (GDD) site.
Conclusion: The algorithm differences between the YASARA Structure and PLANTS programs led to the selection of the best compound 7,4',7''-tri-O-methylagathisflavone (BF3) as a candidate antiviral drug for dengue hemorrhagic fever.
Downloads
References
Shivendu KC, Roy RK. A hospital-based study to evaluate the clinical profile of dengue patients an observational study. Int J Curr Pharm Rev Res. 2024;16(3):127-32.
Chakravarti A, Arora R, Luxemburger C. Fifty years of dengue in India. Trans R Soc Trop Med Hyg. 2012;106(5):273-82. doi: 10.1016/j.trstmh.2011.12.007, PMID 22357401.
Xie X, Wang QY, Xu HY, Qing M, Kramer L, Yuan Z. Inhibition of dengue virus by targeting viral NS4B protein. J Virol. 2011;85(21):11183-95. doi: 10.1128/JVI.05468-11, PMID 21865382.
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. doi: 10.1038/nature12060, PMID 23563266.
Kemenkes RI, Musim MP, Waspadai Lonjakan KMD. DBD; 2022. Available from: https://sehatnegeriku.kemkes.go.id [Last accessed on 19 Jan 2023].
Norazharuddin H, Lai NS. Roles and prospects of dengue virus non-structural proteins as antiviral targets an easy digest. Malays J Med Sci. 2018;25(5):6-15. doi: 10.21315/mjms2018.25.5.2, PMID 30914859.
Lim SP, Noble CG, Shi PY. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res. 2015;119:57-67. doi: 10.1016/j.antiviral.2015.04.010, PMID 25912817.
Nasar S, Rashid N, Iftikhar S. Dengue proteins with their role in pathogenesis and strategies for developing an effective anti-dengue treatment a review. J Med Virol. 2020;92(8):941-55. doi: 10.1002/jmv.25646, PMID 31784997.
Shimizu H, Saito A, Mikuni J, Nakayama EE, Koyama H, Honma T. Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase. PLOS Negl Trop Dis. 2019;13(11):e0007894. doi: 10.1371/journal.pntd.0007894, PMID 31738758.
Freitas AM, Almeida MT, Andrighetti Frohner CR, Cardozo FT, Barardi CR, Farias MR. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. J Ethnopharmacol. 2009;126(3):512-7. doi: 10.1016/j.jep.2009.09.005, PMID 19761825.
Sasaki H, Miki K, Kinoshita K, Koyama K, Juliawaty LD, Achmad SA. β-secretase (BACE-1) inhibitory effect of biflavonoids. Bioorg Med Chem Lett. 2010;20(15):4558-60. doi: 10.1016/j.bmcl.2010.06.021, PMID 20598535.
Mercader AG, Pomilio AB. QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur J Med Chem. 2010;45(5):1724-30. doi: 10.1016/j.ejmech.2010.01.005, PMID 20116898.
Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D. Biflavonoids from torreya nucifera displaying sars-cov 3cl(pro) inhibition. Bioorg Med Chem. 2010;18(22):7940-7. doi: 10.1016/j.bmc.2010.09.035, PMID 20934345.
Coulerie P, Nour M, Maciuk A, Eydoux C, Guillemot JC, Lebouvier N. Structure–activity relationship study of biflavonoids on the dengue virus polymerase denv-ns5 rdrp. Planta Med. 2013;79(14):1313-8. doi: 10.1055/s-0033-1350672, PMID 23929244.
De Sousa LR, Wu H, Nebo L, Fernandes JB, Da Silva MF, Kiefer W. Flavonoids as noncompetitive inhibitors of dengue virus NS2B-NS3 protease inhibition kinetics and docking studies. Bioorg Med Chem. 2015;23(3):466-70. doi: 10.1016/j.bmc.2014.12.015, PMID 25564380.
P Sugita, SDP Handayani, DD Agusta, L Ambarsari, H Dianhar, Rahayu DU. Combined in silico and in vitro approaches to evaluate the inhibitory the potential of biflavonoids from araucaria plants against α-glucosidase as target protein. Rasayan J Chem. 2023;16(1):361-75. doi: 10.31788/RJC.2023.1618147.
Nur NA. Simulasi penambatan molekuler biflavonoid genus araucaria sebagai inhibitor denv ns5 rna-dependent rna polymerase. Bogor, Institut Pertanian Bogor. 2023.
Sugita P, Agusta DD, Dianha H, Suparto IH, Kurniawanti K, Cahyaning Rahayu DU. The cytotoxicity and sar analysis of biflavonoids isolated from araucaria hunsteinii k Schum leaves against MCF-7 and HeLa cancer cells. J Appl Pharm Sci. 2023b;13(10):1-11. doi: 10.7324/japs.19-1677845068.
Agusta DD, Dianhar H, Rahayu DU, Suparto IH, Sugita P. Anticancer and antivirus activities of two biflavonoids from indonesian araucaria hunsteinii k schum leaves. Journal of Hunan University Natural Sciences. 2022;49(3):168-77. doi: 10.55463/issn.1674-2974.49.3.18.
Kurniawanti, Agusta DD, Sugita P, Suparto IH, Dianhar H, Rahayu DU. Bioactive compounds of flavone dimers from Indonesian Araucaria columnaris leaves. Rasayan J Chem. 2023;16(3):1872-82. doi: 10.31788/RJC.2023.1638390.
Sachdeo R, Khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology molecular docking and Molecular Dynamics simulation. Int J App Pharm. 2024;16(2):188-94. doi: 10.22159/ijap.2024v16i2.49922.
Gupta S, Mittal P, Arya GC. Computational insights into the epilepsy-related phytoconstituents of acacia farnesiana in silico analysis molecular modeling and ADMET profiling. Asian J Pharm Res Health Care. 2023;15(3):213-22. doi: 10.4103/ajprhc.ajprhc_59_23.
Lim SP, Noble CG, Seh CC, Soh TS, El Sahili A, Chan GK. Potent allosteric dengue virus ns5 polymerase inhibitors. Mechanism of Action and Resistance Profiling PLOS Pathog. 2016;12(8):e1005737. doi: 10.1371/journal.ppat.1005737, PMID 27500641.
Bhattarai BR, Adhikari B, Basnet S, Shrestha A, Marahatha R, Aryal B. In silico elucidation of potent inhibitors from natural products for nonstructural proteins of dengue virus. J Chem. 2022;2022(1):1-12. doi: 10.1155/2022/5398239.
Kakar MU, Matloob M, Dai R, Deng Y, Ullah K, Kakar IU . In silico screening and identification of deleterious missense SNPs along with their effects on CD-209 gene an insight to CD-209 related-diseases. PLOS ONE. 2021;16(2):e0247249. doi: 10.1371/journal.pone.0247249, PMID 33635927.
Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux AC. PockDrug server a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res. 2015;43(W1):W436-42. doi: 10.1093/nar/gkv462, PMID 25956651.
Gholam GM, Firdausy IA. Molecular docking study of natural compounds from red betel (piper crocatum ruiz & pav) as inhibitor of secreted aspartic proteinase 5 (Sap 5) in candida albicans. SJP. 2022;3(2):97-104. doi: 10.29303/sjp.v3i2.145.
Manalu RT, Safitri H, Sari HP, Devina R, Irnawati I, Liliwana EA. Analisis in silico penghambatan main protease (mpro) pada sars-cov-2 oleh senyawa aktif teh hijau (camelia sinensis). J Far. 2021;8(2):548. doi: 10.47653/farm.v8i2.548.
Mulatsari E, Martati T, Mumpuni E, Dewi NL. In silico analysis of antiviral activity of analog curcumin compounds. J Jamu Indo. 2020;5(3):114-21. doi: 10.29244/jji.v5i3.173.
Agistia DD, Purnomo H, Tegar M, Nugroho AE. Interaction between active compounds from Aegle marmelos correa as anti inflammation agent with cox-1 and cox-2 receptor. 2013;18(2):80-7.
Rollando R, Aktivitas PS, Senyawa PM. 2-iminoethyl 2-(2-(1-hydroxypentan-2-yl) phenyl)acetate hasil isolasi fungi endofit genus fusarium sp pada enzim β-ketoasil-acp kasa synthase dan enzim asam mikolat siklopropana synthase. Pharm J Indones. 2018;3(2):45-51. doi: 10.21776/ubpji.2017.003.02.2.
Mulyati B, Seulina Panjaitan R. Study of molecular docking of alkaloid derivative compounds from stem karamunting (rhodomyrtus tomentosa)against α-glucosidase enzymes. Indo J Chem Res. 2021;9(2):129-36. doi: 10.30598/ijcr.2020.9-bud.
Normaidah N, Nurmansyah D. Studi in silico senyawa hylocereus polyrhizus dan allium sativum terhadap enzim hmg-coa reduktase. JPS. 2021;8(2):40-50. doi: 10.20527/jps.v8i2.11639.
Allen LH, Prentice A, Caballero B. Encyclopedia of Human Nutrition. 3rd ed. Cambridge Academic Press; 2013.
Kumar S, Bajrai LH, Faizo AA, Khateb AM, Alkhaldy AA, Rana R. Pharmacophore-model-based drug repurposing for the identification of the potential inhibitors targeting the allosteric site in dengue virus NS5 RNA-dependent RNA polymerase. Viruses. 2022;14(8)1827. doi: 10.3390/v14081827, PMID 36016449.
Nursamsiar N, Mangande M, Awaluddin A, Nur S, Asnawi A. In silico study of aglycon curculigoside a and its derivatives as α-amilase inhibitors. IJPST. 2020;7(1):29-37. doi: 10.24198/ijpst.v7i1.23062.
Ramirez D, Caballero J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data. Molecules. 2018;23(5):1-17. doi: 10.3390/molecules23051038, PMID 29710787.
Nguyen NM, Tran CN, Phung LK, Duong KT, Huynh HL, Farrar J. A randomized double-blind placebo controlled trial of balapiravir a polymerase inhibitor in adult dengue patients. J Infect Dis. 2013;207(9):1442-50. doi: 10.1093/infdis/jis470, PMID 22807519.
Nelson DL, Cox MM. Lehninger principles of biochemistry. 8th ed. New York City WH freeman and company; 2021.
Syahputra G, Ambarsari L, Sumaryada T, Enol SDK. Bisdemetoksikurkumin dan analognya sebagai inhibitor enzim12-lipoksigenase. J Biofisika. 2014;10(1):55-67.
Howell M, Dumitrescu DG, Blankenship LR, Herkert D, Hatzios SK. Functional characterization of a subtilisin-like serine protease from vibrio cholerae. J Biol Chem. 2019;294(25):9888-900. doi: 10.1074/jbc.RA119.007745, PMID 31076508.
Suryawan CP. Potensi senyawa aktif biflavonoid dari genus araucaria sebagai antirematik melalui penambatan proteasom 20s secara in silico. Bogor: Institut Pertanian Bogor; 2023. Available from: http://www.nber.org/papers/w16019.
Mahalanobish S, Saha S, Dutta S, Ghosh S, Sil PC. Anti-inflammatory efficacy of some potentially bioactive natural products against rheumatoid arthritis. In brachmachari G editor. Discovery and development of anti-inflammatory agents from natural products. Elsevier Inc. 2019. p. 61-100. doi: 10.1016/B978-0-12-816992-6.00003-6.
Proença C, Freitas M, Ribeiro D, Oliveira EF, Sousa JL, Tome SM. α-glucosidase inhibition by flavonoids an in vitro and in silico structure activity relationship study. J Enzyme Inhib Med Chem. 2017;32(1):1216-28. doi: 10.1080/14756366.2017.1368503, PMID 28933564.
Shah S, Arshia JK, Javaid K, Zafar H, Mohammed Khan K, Khalil R. Synthesis and in vitro and in silico α-glucosidase inhibitory studies of 5-Chloro-2-Aryl Benzo[d]thiazoles. Bioorg Chem. 2018;78:269-79. doi: 10.1016/j.bioorg.2018.02.013, PMID 29614438.
Adisty Ridha Damasuri, Eti Nurwening Sholikhah, Mustofa. Cytotoxicity of ((E)-1-(4-aminophenyl)-3-phenylprop-2-en-1-one)) on HeLa cell line. IJP Ther. 2020;1(2):54-9. doi: 10.22146/ijpther.606.
Wu B, Song HP, Zhou X, Liu XG, Gao W, Dong X. Screening of minor bioactive compounds from herbal medicines by in silico docking and the trace peak exposure methods. J Chromatogr A. 2016;1436:91-9. doi: 10.1016/j.chroma.2016.01.062, PMID 26852619.
Xiong X, Tang N, Lai X, Zhang J, Wen W, Li X. Insights into amentoflavone a natural multifunctional biflavonoid. Front Pharmacol. 2021;12:768708. doi: 10.3389/fphar.2021.768708, PMID 35002708.
Published
How to Cite
Issue
Section
Copyright (c) 2024 LAKSMI AMBARSARI, NAJMA AULIA NUR, SYIFA SILFANI RODOTUL ZANAH, KURNIAWANTI, HANHAN DIANHAR, SITI WARNASIH, DYAH UTAMI CAHYANING RAHAYU, PURWANTININGSIH SUGITA
This work is licensed under a Creative Commons Attribution 4.0 International License.