COMPUTATIONAL ASSESSMENT OF UNDARIA PINNATIFIDA AND MORINGA OLEIFERA COMPOUNDS AS ANTI-OBESITY AGENTS

Authors

  • C. SAI KALYANI YOGINI Department of Bio Medical Sciences, Assistant Professor, School of Health Sciences, the Apollo University, Chittoor -517127, Andhra Pradesh, India https://orcid.org/0009-0002-1416-9766
  • CHITTA SURESH KUMAR Department of Biochemistry, Srikrishnadevaraya University, Ananthapuram-515003, India
  • C. M. ANURADHA Department of Biotechnology, Srikrishnadevaraya University, Ananthapuram-515003, India
  • C. H. M. KUMARI CHITTURI Department of Applied Microbiology and Biochemistry, Sri Padmavati Mahila Vishvavidyalayam, (Women’s University), Tirupati, Andhra Pradesh, India

DOI:

https://doi.org/10.22159/ijap.2024v16i5.50867

Keywords:

Obesity, Undaria pinnatifida, Moringa oleifera, PPAR γ, Molecular docking

Abstract

Objective: The objective of this topic is to discuss the potential of using bioactive substances of Undaria Pinnatifida Ethanolic Extract of (UPEE) and Moringa Oleifera Methanolic Extract of (MOME) extracts as pharmacological agents and inhibitors of Peroxisome Proliferator-Activated Receptor gamma  (PPAR-γ), Fat Mass and Obesity-Associated (FTO), Resistin and leptin to counter obesity.

Methods: The study uses Gas Chromatography–Mass Spectrometry (GC-MS)

 and Fourier-Transform InfraRed (FTIR) Spectroscopy techniques to identify the bioactive components of these extracts and evaluates their efficacy through in silico assessments and molecular docking analysis.

Results: Analysis of docking results revealed that ligand interaction with FTO (ID:3LFM)docking complex showed good binding affinity, binding oreintation,  pharmocological properties. Hence, the best ligands were proposed as the best antagonist to block PPAR- γ, FTO, Resistin and leptin which plays major role in the drug devolopment pathways.

Conclusion: UPEE and MOME extracts acts as pharmacological agents for anti-obesity genes. PPAR-γ -4CI5 has a best docking score (-7.716 kcal/mol), as a result. As a result, the standard was recommended as the best antagonist to block the key enzyme involved in the drug development pathways.

Downloads

Download data is not yet available.

References

Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J, Speakman JR, Meyre D. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. ObesRev. 2018 Feb;19(2):121-149. doi: 10.1111/obr.12625. Epub 2017 Nov 16. PMID: 29144594.

Saunders KH, Igel LI, Shukla AP, Aronne LJ. Drug-induced weight gain: Rethinking our choices. J Fam Pract. 2016 Nov;65(11):780-788. PMID: 28087864.

Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014 Jan-Feb;56(4):369-81. doi: 10.1016/j.pcad.2013.10.016. Epub 2013 Oct 24. PMID: 24438728.

Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today. 2007 Oct;12(19-20):879-89. doi: 10.1016/j.drudis.2007.07.024. Epub 2007 Sep 17. PMID: 17933690.

Moreno-Córdova EN, Arvizu-Flores AA, Valenzuela-Soto EM, García-Orozco KD, Wall-Medrano A, Alvarez-Parrilla E, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA. Gallotannins are uncompetitive inhibitors of pancreatic lipase activity. Biophys Chem. 2020 Sep;264:106409. doi: 10.1016/j.bpc.2020.106409. Epub 2020 Jun 3. PMID: 32534374.

Chaput JP, Bérubé-Parent S, Tremblay A. Obesity and cardiovascular physiology: impact of some pharmacological agents. Curr VascPharmacol. 2005 Apr;3(2):185-93. doi: 10.2174/1570161053586886. PMID: 15853638.

Cheung BM, Cheung TT, Samaranayake NR. Safety of antiobesity drugs. Ther Adv Drug Saf. 2013 Aug;4(4):171-81. doi: 10.1177/2042098613489721. PMID: 25114779; PMCID: PMC4125319.

Grasa-López A, Miliar-García Á, Quevedo-Corona L, Paniagua-Castro N, Escalona-Cardoso G, Reyes-Maldonado E, Jaramillo-Flores ME. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity. Mar Drugs. 2016 Aug 3;14(8):148. doi: 10.3390/md14080148. PMID: 27527189; PMCID: PMC4999909.

Sofowora A. Recent trends in research into African medicinal plants. J Ethnopharmacol. 1993 Mar;38(2-3):209-14. doi: 10.1016/0378-8741(93)90017-y. PMID: 8510470.

Jiang S, Yu M, Wang Y, Yin W, Jiang P, Qiu B, Qi H. Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida. Foods. 2022; 11(8):1078. https://doi.org/10.3390/foods11081078

Ali Ali Redha, Simone Perna, Antonella Riva, Giovanna Petrangolini, Gabriella Peroni, Mara Nichetti, Giancarlo Iannello, Maurizio Naso, Milena Anna Faliva, Mariangela Rondanelli, Novel insights on anti-obesity potential of the miracle tree, Moringa oleifera: A systematic review, Journal of Functional Foods, Volume 84, 2021, 104600,

ISSN 1756-4646, https://doi.org/10.1016/j.jff.2021.104600.

Kim DS, Choi MH, Shin HJ. Extracts of Moringa oleifera leaves from different cultivation regions show both antioxidant and antiobesity activities. J Food Biochem. 2020 Jul;44(7):e13282. doi: 10.1111/jfbc.13282. Epub 2020 May 20. PMID: 32436270.

Daghaghele, S., Kiasat, A. R., SafieddinArdebili, S. M., &Mirzajani, R. (2021). Intensification of Extraction of Antioxidant Compounds from Moringa Oleifera Leaves Using Ultrasound-Assisted Approach: BBD-RSM Design. International Journal of Fruit Science, 21(1), 693–705. https://doi.org/10.1080/15538362.2021.1926396

Bhattacharya A, Tiwari P, Sahu PK, Kumar S. A Review of the Phytochemical and Pharmacological Characteristics of Moringa oleifera. J Pharm Bioallied Sci. 2018 Oct-Dec;10(4):181-191. doi: 10.4103/JPBS.JPBS_126_18. PMID: 30568375; PMCID: PMC6266645.

Avwioroko, O. J., Anigboro, A. A., Otuechere, C. A., Atanu, F. O., Dairo, O. F., Oyetunde, T. T., ... &Tonukari, N. J. (2022). α-Amylase inhibition, anti-glycation property and characterization of the binding interaction of citric acid with α-amylase using multiple spectroscopic, kinetics and molecular docking approaches. Journal of Molecular Liquids, 360, 119454.

Moreno-Córdova, E. N., Arvizu-Flores, A. A., Valenzuela-Soto, E. M., García-Orozco, K. D., Wall-Medrano, A., Alvarez-Parrilla, E., ... & González-Aguilar, G. A. (2020). Gallotannins are uncompetitive inhibitors of pancreatic lipase activity. Biophysical Chemistry, 264, 106409.

Alaşalvar, C., Öztürk, N., Gökce, H., Güder, A., Menteşe, E., & Bektaş, H. (2022). Synthesis, structural, spectral, antioxidant, bioactivity and molecular docking investigations of a novel triazole derivative. Journal Of Biomolecular Structure And Dynamics, 40(14), 6642-6655.

McNaught, A. D. (1997). Compendium of chemical terminology (Vol. 1669). Oxford: Blackwell Science.

Dandekar, R., Fegade, B., & Bhaskar, V. H. (2015). GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxypetalum leaves. Journal of pharmacognosy and phytochemistry, 4(1), 148-154.

Rester U. From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel. 2008 Jul;11(4):559-68. PMID: 18600572.

Judith M. Rollinger, Theodora M. Steindl, Daniela Schuster, Johannes Kirchmair, Kathrin Anrain, Ernst P. Ellmerer, Thierry Langer, Hermann Stuppner, Peter Wutzler, and Michaela Schmidtke Structure-Based Virtual Screening for the Discovery of Natural Inhibitors for Human Rhinovirus Coat Protein, Journal of Medicinal Chemistry 2008 51 (4), 842-851 DOI: 10.1021/jm701494b.

Pedro J. Ballester, John B. O. Mitchell, A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking, Bioinformatics, Volume 26, Issue 9, May 2010, Pages 1169–1175, https://doi.org/10.1093/bioinformatics/btq112

Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Comprehensive Pharmacology. 2022:408–22. doi: 10.1016/B978-0-12-820472-6.00041-4. Epub 2022 Jun 9. PMCID: PMC8016209.

S.Kannan, FT-IR and EDS analysis of the seaweeds Sargassum wightii (brown algae) and Gracilariacorticata (red algae) , International journal of current microbiology and applied sciences, ISSN: 2319-7706 Volume 3 Number 4 (2014) pp.341-351

Hui Si Audrey Koh, Jun Lu, Weibiao Zhou, Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand, Carbohydrate Polymers,Volume 212, 2019, Pages 178-185, ISSN 0144-8617, https://doi.org/10.1016/j.carbpol.2019.02.040.

Andriy Synytsya, Woo-Jung Kim, Sung-Min Kim, Radek Pohl, AllaSynytsya, František Kvasnička, Jana Čopíková, Yong Il Park, Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida, Carbohydrate Polymers, Volume 81, Issue 1, 2010, Pages 41-48, ISSN 0144-8617, https://doi.org/10.1016/j.carbpol.2010.01.052.

Hentati, Faiez&Barkallah, Mohamed &Atitallah, Ali &Dammak, Mouna & Louati, Ibtihel& Pierre, Guillaume &Fendri, Imen & Attia, Hamadi & Michaud, Philippe &Abdelkafi, Slim. (2019). Quality Characteristics and Functional and Antioxidant Capacities of Algae-Fortified Fish Burgers Prepared from Common Barbel (Barbus barbus). BioMed Research International. 2019. 1-14. 10.1155/2019/2907542.

Bunaciu, A. A., Aboul-Enein, H. Y., &Fleschin, S. (2011). Recent applications of fourier transform infrared spectrophotometry in herbal medicine analysis. Applied Spectroscopy Reviews, 46(4), 251-260.

Brangule, A., Šukele, R., &Bandere, D. (2020). Herbal medicine characterization perspectives using advanced FTIR sample techniques–diffuse reflectance (DRIFT) and photoacoustic spectroscopy (PAS). Frontiers in plant science, 11, 356.

Andreas Barth, Infrared spectroscopy of proteins, Biochimica et Biophysica Acta (BBA) – Bioenergetics Volume 1767, Issue 9, 2007, Pages 1073-1101, ISSN 0005-2728, https://doi.org/10.1016/j.bbabio.2007.06.004

S.M. Rafiquzzaman, Eun-Young Kim, Yu-Ri Kim, Taek-Jeong Nam, In-Soo Kong, Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model, International Journal of Biological Macromolecules, Volume 62, 2013, Pages 265-272, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2013.09.009.

Li, Y. Q., Kong, D. X., & Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Industrial Crops and Products, 41, 269-278.

Katelia, R., Jauhar, M. M., Syaifie, P. H., Nugroho, D. W., Ramadhan, D., Arda, A. G., Mardliyati, E., &Anshori, I. (2022). In silico investigation of xanthone derivative potency in inhibiting carbonic anhydrase ii (ca ii) using molecular docking and molecular dynamics (md) simulation. International Journal of Applied Pharmaceutics, 14(5), 190–198. https://doi.org/10.22159/ijap.2022v14i5.45388.

Muhaimin, M., Chaerunisaa, A. Y., Rostinawati, T., Amalia, E., Hazrina, A., &Nurhasanah, S. (2023). A reviewon nanoparticles of moringa oleifera extract: preparation, characterization, and activity. International Journal of Applied Pharmaceutics, 15(4), 43–51. https://doi.org/10.22159/ijap.2023v15i4.47709.

A. Bhange, M., Pethe, A., &Hadke, A. (2023). Design and development of phytosomal soft nanoparticles for liver targeting. International Journal of Applied Pharmaceutics, 15(1), 280–289. https://doi.org/10.22159/ijap.2023v15i1.46303

S., R., R., V., & P., A. (2022). GCMS Analysis on Andrographis paniculata seed extract and its anticancer activity. International Journal of Applied Pharmaceutics, 14, 84–88. https://doi.org/10.22159/ijap.2022.v14ti.5

Published

05-07-2024

How to Cite

YOGINI, C. S. K., KUMAR, C. S., ANURADHA, C. M., & CHITTURI, C. H. M. K. (2024). COMPUTATIONAL ASSESSMENT OF UNDARIA PINNATIFIDA AND MORINGA OLEIFERA COMPOUNDS AS ANTI-OBESITY AGENTS. International Journal of Applied Pharmaceutics, 16(5). https://doi.org/10.22159/ijap.2024v16i5.50867

Issue

Section

Original Article(s)