ESTIMATION OF IN VIVO PERFORMANCE OF SULFAMETHOXAZOLE AND TRIMETHOPRIM FROM ORAL SUSPENSIONS USING IN VITRO RELEASE DATA FROM A MINI PADDLE APPARATUS

Authors

  • JUAN CARLOS RUIZ-SEGURA Departamento Sistemas Biologicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0003-2304-7971
  • JOSE MANUEL RIOS-RODRÍGUEZ Departamento Sistemas Biologicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
  • FELIPE DINO REYES-RAMÍREZ Departamento Sistemas Biologicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0009-0009-6876-9223
  • CESAR ENRIQUE VELAZQUEZ-SANCHEZ Departamento Sistemas Biologicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
  • JOSE RAUL MEDINA-LOPEZ Departamento Sistemas Biologicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico https://orcid.org/0000-0002-4159-8403

DOI:

https://doi.org/10.22159/ijap.2024v16i4.51014

Keywords:

Convolution, Sulfamethoxazole, Suspensions, Trimethoprim, Prediction Error

Abstract

Objective: To estimate plasma concentrations-time profiles of sulfamethoxazole (SMZ) and trimethoprim (TMP) from oral pediatric suspensions through in vitro data generated with a mini paddle apparatus and dissolution media of physiological relevance. Post-marketing evaluation of pediatric formulations is always necessary.

Methods: Dissolution profiles of SMZ/TMP were obtained with a mini paddle apparatus at 100 rpm and 200 ml of 0.1 N HCl (pH 1.2), pH 4.5 acetate buffer, and pH 6.8 phosphate buffer. The reference and three multi-source pediatric formulations were tested. Drugs were quantified by a UV derivative method. Dissolution profiles were compared with model-independent and model-dependent methods. Plasma levels were estimated with dissolution data and published in vivo information. Percent of prediction error (%PE) for Cmax and AUC0-inf at each condition was calculated.

Results: In all conditions, similar dissolution profiles were found excepting for TMP of C drug product at pH 1.2 (f2<50). With model-independent comparisons significant differences in in vitro release performance of SMZ and TMP from all multi-source formulations were found (*P<0.05). When comparing the hypothetical Cmax and AUC0-inf of both drugs with in vivo data PE<15% were found only with reference and one formulation at pH 1.2.

Conclusion: The mini paddle apparatus and dissolution media of pH 1.2 were the best conditions to estimate in vivo plasma concentrations of SMZ and TMP from reference. These settings seem adequate to evaluate in vitro performance of multi-source formulations. It is necessary to carried out human studies with the used fixed-dose combination formulations to correlate in vitro/in vivo data.

Downloads

Download data is not yet available.

References

Buontempo F, Moretton MA, Quiroga E, Chiappetta DA. Extemporaneous clobazam suspensions for paediatric use prepared from commercially available tablets and pure drug. Farm Hosp. 2013;37(2):103-10. doi: 10.7399/FH.2013.37.2.117, PMID 23789754.

Ouma C, Okoth P, Nyamai R, Kamau NG, Mutai K, Onono MA. Acceptability, adherence, and clinical outcomes, of amoxicillin dispersible tablets versus oral suspension in treatment of children aged 2-59 months with pneumonia, Kenya: a cluster randomized controlled trial. Angwa lM. Heliyon. 2020;6(4):e03786. doi: 10.1016/j.

Jayasheel BG. Regulatory requirements for marketing fixed-dose combinations. Perspect Clin Res. 2010;1(4):120-3. doi: 10.4103/2229-3485.71768, PMID 21350725.

Masters PA, O’Bryan TA, Zurlo J, Miller DQ, Joshi N. Trimethoprim-sulfamethoxazole revisited. Arch Intern Med. 2003;163(4):402-10. doi: 10.1001/archinte.163.4.402, PMID 12588198.

Gruneberg RN. The microbiological rationale for the combination of sulphonamides with trimethoprim. J Antimicrob Chemother. 1979;5(B):27-36. doi: 10.1093/jac/5.supplement_b.27[Suppl], PMID 536345.

Oberhelman RA, Javier de la Cabada F, Vasquez Garibay E, Bitsura JA, DuPont HL. Efficacy of trimethoprim-sulfamethoxazole in treatment of acute diarrhea in a mexican pediatric population. J Pediatr. 1987;110(6):960-5. doi: 10.1016/s0022-3476(87)80425-0, PMID 3295163.

Teker D, Tanir G, Ozmen S, Teke TA, Keles S, Bostancı I. Treatment of brucellosis in a young child with trimethoprim/sulfamethoxazole anaphylaxis. J Infect Public Health. 2014;7(6):553-6. doi: 10.1016/j.jiph.2014.07.004, PMID 25182510.

Ghaffari K, Falahati V, Motallebirad T, Safarabadi M, Tashakor AH, Azadi D. Microbiological and molecular study of paranasal sinus infections of children with malignancy and unknown origin fever in markazi province, Iran. Curr Ther Res Clin Exp. 2024;100:100745. doi: 10.1016/j.curtheres.2024.100745, PMID 38617893.

Peng M, Tang B, Li F, Deng Y, Dai Y, Chen L. A retrospective analysis of Q fever osteomyelitis in children, with recommendations. Microbes Infect. 2023;25(8):105189. doi: 10.1016/j.micinf.2023.105189, PMID 37499790.

Dueger EL, Asturias EJ, Matheu J, Gordillo R, Torres O, Halsey N. Increasing penicillin and trimethoprim-sulfamethoxazole resistance in nasopharyngeal Streptococcus pneumoniae isolates from guatemalan children, 2001-2006. Int J Infect Dis. 2008;12(3):289-97. doi: 10.1016/j.ijid.2007.09.001, PMID 18035570.

lyu S, Shi W, Dong F, Xu BP, liu G, Wang Q. Serotype distribution and antimicrobial resistance of pediatric streptococcus pneumoniae isolated from inpatients and outpatients at Beijing Children’s Hospital. Braz J Infect Dis. 2024;28(2):103734. doi: 10.1016/j.bjid.2024.103734, PMID 38471654.

Lv Y, Liu X, Xu K. The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin. Chemosphere. 2020;253:126695. doi: 10.1016/j.li(Y):2020.126695.

Kocak Z, Hatipoglu CA, Ertem G, Kinikli S, Tufan A, Irmak H. Trimethoprim-sulfamethoxazole induced rash and fatal hematologic disorders. J Infect. 2006;52(2):e49-52. doi: 10.1016/j.jinf.2005.05.008, PMID 15996741.

Wanat KA, Anadkat MJ, Klekotka PA. Seasonal variation of Stevens-Johnson syndrome and toxic epidermal necrolysis associated with trimethoprim-sulfamethoxazole. J Am Acad Dermatol. 2009;60(4):589-94. doi: 10.1016/j.jaad.2008.11.884, PMID 19217690.

Kim T, Sung H, Chong YP, Kim SH, Choo EJ, Choi SH. Low lymphocyte proportion in bronchoalveolar lavage fluid as a risk factor associated with the change from trimethoprim/sulfamethoxazole used as first-line treatment for Pneumocystis jirovecii pneumonia. Infect Chemother. 2018;50(2):110-9. doi: 10.3947/ic.2018.50.2.110, PMID 29968978.

da Silva Honorio T, Simon A, Machado RM, Rodrigues CR, do Carmo FA, Cabral LM. Use of in silico methodologies to predict the bioavailability of oral suspensions: a regulatory approach. Curr Pharm Des. 2023;29(38):3040-9. doi: 10.2174/0113816128257028231030113156, PMID 37957861.

Klein S. The mini paddle apparatus-a useful tool in the early developmental stage? Experiences with immediate-release dosage forms. Dissolution Technol. 2006;13(4):6-11. doi: 10.14227/DT130406P6.

Mohammadi A, Moghaddas JS. Experimental and computational study on hydrodynamic of a downscaled mini vessel USP dissolution test apparatus II. Iran J Chem Eng. 2019;16(3):3-22.

Schutt M, Stamatopoulos K, Batchelor HK, Simmons MJ, Alexiadis A. Development of a digital twin of a tablet that mimics a real solid dosage form: differences in the dissolution profile in conventional mini-USP II and a biorelevant colon model. Eur J Pharm Sci. 2022;179:106310. doi: 10.1016/j.ejps.2022.106310, PMID 36265815.

Singhvi G, Shah A, Yadav N, Saha RN. Prediction of in vivo plasma concentration-time profile from in vitro release data of designed formulations of milnacipran using numerical convolution method. Drug Dev Ind Pharm. 2015;41(1):105-8. doi: 10.3109/03639045.2013.850706, PMID 24164467.

Rastogi V, Yadav P, Lal N, Rastogi P, Singh BK, Verma N. Mathematical prediction of pharmacokinetic parameters-an in vitro approach for investigating pharmaceutical products for IVIVC. Future J Pharm Sci. 2018;4(2):175-84. doi: 10.1016/j.fjps.2018.03.001.

Scheubel E, Lindenberg M, Beyssac E, Cardot JM. Small volume dissolution testing as a powerful method during pharmaceutical development. Pharmaceutics. 2010;2(4):351-63. doi: 10.3390/pharmaceutics2040351, PMID 27721362.

Sowmya C, Abrar Ahmed H, Suriya Prakaash KK. Virtual bioequivalence in pharmaceuticals: current status and future prospects. Int J App Pharm. 2023;15(5):1-9. doi: 10.22159/ijap.2023v15i5.48589.

Ezzedeen FW, Majeed SH, Shihab FA, Mahmoud MJ, Robinson DH, Tahseen YH. In vitro and in vivo evaluation of four co-trimoxazole oral suspensions. International Journal of Pharmaceutics. 1990;59(3):255-61. doi: 10.1016/0378-5173(90)90116-L.

Akhtar N, Ahmad M, Irfan N. Comparative bioavailability of sulfamethoxazole in three formulations of cotrimoxazole suspensions. Pak J Pharm Sci. 1997;10(2):29-33. PMID 16414800.

Listado actualizado de Medicamentos de Referencia 2023/02. Cofepris. Mexico. Available from: https://www.gob.mx/cms/uploads/attachment/file/869172/lMR_2023-02_actualizaci_n_18_octubre_2023.pdf [Last accessed on 13 May 2024]

Muchlisyam M, Tr P, RS. Determination of simultaneous sulfamethoxazole and trimethoprim by ultraviolet spectrophotometry with mean centering of ratio spectra. Asian J Pharm Clin Res. 2018;11(13). doi: 10.22159/ajpcr.2018.v11s1.26569.

Medina JR, Miranda M, Hurtado M, Dominguez Ramirez AM, Ruiz Segura JC. Simultaneous determination of trimethoprim and sulfamethoxazole in immediate-release oral dosage forms by first-order derivative spectroscopy: application to dissolution studies. Int J Pharm Pharm Sci. 2013;5(4):505-10.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263-71. doi: 10.1208/s12248-010-9185-1, PMID 20373062.

Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int J Pharm. 2000;209(1-2):57-67. doi: 10.1016/s0378-5173(00)00554-8, PMID 11084246.

Hassan HA, Charoo NA, Ali AA, Alkhatem SS. Establishment of a bioequivalence indicating dissolution specification for candesartan cilexetil tablets using a convolution model. Dissolution Technol. 2015;22(1):36-43. doi: 10.14227/DT220115P36.

Alonso Campero R, Bernardo Escudero R, Del Cisne Valle Alvarez D, Gonzalez de la Parra M, Namur Montalvo S, Burke Fraga V. Bioequivalence of two commercial preparations of trimethoprim/sulfamethoxazole: a randomized, single-dose, single-blind, crossover trial. Clin Ther. 2007;29(2):326-33. doi: 10.1016/j.clinthera.2007.02.018, PMID 17472824.

Stevens RC, Rodman JH. Pharmacokinetics of antimicrobial therapy. Semin Pediatr Infect Dis. 1998;9(4):273-80. doi: 10.1016/S1045-1870(98)80016-2.

Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in microsoft excel. Comput Methods Programs Biomed. 2010;99(3):306-14. doi: 10.1016/j.cmpb.2010.01.007, PMID 20176408.

Food and Drug Administration. Guidance for industry: extended-release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations; 1997. Available from: https://www.fda.gov/media/70939/download [Last accessed on 13 May 2024]

Bendas ER. Two different approaches for the prediction of in vivo plasma concentration–time profile from in vitro release data of once daily formulations of diltiazem hydrochloride. Arch Pharm Res. 2009;32(9):1317-29. doi: 10.1007/s12272-009-1918-2, PMID 19784589.

Rios Rodriguez JM, Reyes Ramirez FD, Ruiz Segura JC, Medina Lopez JR. Prediction of sulfamethoxazole and trimethoprim plasma levels from tablets and dissolution media of physiological relevance. Int J App Pharm. 2024;16(3):182-6. doi: 10.22159/ijap.2024v16i3.50409.

Food and Drug Administration. Guidance for Industry: waiver on in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system; 2017. Available from: https://collections.nlm.nih.gov/catalog/nlm:nlmuid-101720038-pdf [Last accessed on 13 May 2024]

Chen BK, Yang YT. Post-marketing surveillance of prescription drug safety: past, present, and future. J Leg Med. 2013;34(2):193-213. doi: 10.1080/01947648.2013.800797, PMID 23980746.

Neves EO, Sales PM, Silveira D. Post-marketing sampling and testing programs for licensed medicinal products: a narrative review. Braz J Pharm Sci. 2022;58:e19538. doi: 10.1590/s2175-97902022e19538.

Kubota K, Twizell EH, Maibach HI. Drug release from a suspension with a finite dissolution rate: theory and its application to a betamethasone 17-valerate patch. J Pharm Sci. 1994;83(11):1593-9. doi: 10.1002/jps.2600831115, PMID 7891281.

Soares TS, Souza J, Rosa LS, Marques Marinho FD. Dissolution test for oral suspension: an overview about use and importance. Braz J Pharm Sci. 2022;58:e19423. doi: 10.1590/s2175-97902022e19423.

Published

07-07-2024

How to Cite

RUIZ-SEGURA, J. C., RIOS-RODRÍGUEZ, J. M., REYES-RAMÍREZ, F. D., VELAZQUEZ-SANCHEZ, C. E., & MEDINA-LOPEZ, J. R. (2024). ESTIMATION OF IN VIVO PERFORMANCE OF SULFAMETHOXAZOLE AND TRIMETHOPRIM FROM ORAL SUSPENSIONS USING IN VITRO RELEASE DATA FROM A MINI PADDLE APPARATUS. International Journal of Applied Pharmaceutics, 16(4), 129–134. https://doi.org/10.22159/ijap.2024v16i4.51014

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >>