INNOVATIVE LIPIDIC NANOCARRIERS OF FLUTAMIDE ENHANCING ITS IN VITRO CYTOTOXICITY AND IN VIVO ORAL BIOAVAILABILITY: DESIGN, OPTIMIZATION, CHARACTERIZATION, AND PHARMACOKINETIC ASPECTS

Authors

  • MOHAMED A. ALI Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
  • MAGDY I. MOHAMED Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt https://orcid.org/0000-0002-0480-7720
  • KHALID M. EL-SAY Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah-21589, Saudi Arabia https://orcid.org/0000-0002-5539-3193
  • MOHAMED A. MEGAHED Department of Pharmaceutics and Pharmaceutical Technology, Egyptian Russian University, Cairo, Egypt https://orcid.org/0000-0001-5887-4235

DOI:

https://doi.org/10.22159/ijap.2024v16i4.51037

Keywords:

Bioavailability, Box-behnken design, Flutamide, PC-3 cell line, MTT assay, Optimization, Pharmacokinetic

Abstract

Objective: the reduced oral bioavailability of Flutamide has hindered its effectiveness as a chemotherapeutic agent for prostate cancer treatment. Our study aimed to enhance FLUTAMIDE in vitro cytotoxicity and oral bioavailability via its incorporation into lipid nanocarriers that contained solid lipid (Precirol®) alone or in combination with anti-androgenic oils such as Saw Palmetto Oil (SPO) and Pumpkin Seed Oil (PSO).

Methods: we employed the Box Behnken Design (BBD) to optimize Flutamide-loaded nanocarriers, focusing on mean vesicular size, zeta potential, and entrapment efficiency.

Results: the optimized nanovesicles exhibited dimensions of 330.2 nm, a zeta potential of -43.1 mV, and an entrapment efficiency of 66.1%. Morphological analysis using Transition Electron Microscope (TEM) and Scanning Electron Microscope (SEM) confirmed the spherical shape of the nanovesicles. Differntial Scanning Calorimetry (DSC) thermograms and X-ray diffractograms indicated decreased crystallinity of encapsulated Flutamide compared to free Flutamide. In vitro cytotoxicity studies demonstrated enhanced effects against prostate cancer cells (PC-3) for optimized Flutamide-loaded nanocarriers containing the 2 anti-androgenic oils over both nanocarriers containing no oils and free Flutamide suspension. In vivo pharmacokinetic analysis in male rats showed increased oral bioavailability for flutamide-loaded nanocarriers with Cmax values of 559.35±41.79 ng/ml and 670.9±24.61 ng/ml for different formulations compared to the free flutamide suspension with a Cmax value of 281.4±94.33 ng/ml.

Conclusion: These findings support FLUTAMIDE oral bioavailability improvement through nanocarriers encapsulation, advocating its utilization in prostate cancer therapy and approving the additive anti-androgenic effect after its combination with SPO and PSO.

Downloads

Download data is not yet available.

References

Blair HA. Hexanic extract of serenoa repens (Permixon®): a review in symptomatic benign prostatic hyperplasia. Drugs Aging. 2022;39(3):235-43. doi: 10.1007/s40266-022-00924-3, PMID 35237936.

leisegang K, Jimenez M, Durairajanayagam D, Finelli R, Majzoub A, Henkel R. Phytomedicine plus a systematic review of herbal medicine in the clinical treatment of benign prostatic hyperplasia. Phytomedicine Plus. 2022;2(1):100-53. doi: 10.1016/j.phyplu.2021.100153.

Ali MA, Mohamed MI, Megahed MA, Abdelghany TM, El-Say KM. Cholesterol-based nanovesicles enhance the in vitro cytotoxicity, ex vivo intestinal absorption, and in vivo bioavailability of flutamide. Pharmaceutics. 2021;13(11):1-22. doi: 10.3390/pharmaceutics13111741, PMID 34834155.

Giorgetti R, di Muzio M, Giorgetti A, Girolami D, Borgia L, Tagliabracci A. Flutamide-induced hepatotoxicity: ethical and scientific issues. Eur Rev Med Pharmacol Sci. 2017;21(1)Suppl:69-77. PMID 28379593.

Khan N, Abdelhamid HN, Yan JY, Chung FT, Wu HF. Detection of flutamide in pharmaceutical dosage using higher electrospray ionization mass spectrometry (ESI-MS) tandem mass coupled with Soxhlet apparatus. Anal Chem Res. 2015;3(Feb):89-97. doi: 10.1016/j.ancr.2015.01.001.

Rojas PA, Iglesias TG, Barrera F, Mendez GP, Torres J, San Francisco IF. Acute liver failure and liver transplantation secondary to flutamide treatment in a prostate cancer patient. Urol Case Rep. 2020;33:101370. doi: 10.1016/j.eucr.2020.101370, PMID 33102069.

Jeevana JB, Sreelakshmi K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J Young Pharm. 2011;3(1):4-8. doi: 10.4103/0975-1483.76413, PMID 21607048.

Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilization monophase solution technique for improvement of the physicochemical properties of an anticancer drug, flutamide. Eur J Pharm Biopharm. 2010;74(2):397-405. doi: 10.1016/j.ejpb.2009.11.011, PMID 19944160.

Youssef SF, Elnaggar YS, Abdallah OY. Elaboration of polymersomes versus conventional liposomes for improving oral bioavailability of the anticancer flutamide. Nanomedicine (Lond). 2018;13(23):3025-36. doi: 10.2217/nnm-2018-0238, PMID 30507344.

Bakhaidar RB, Hosny KM, Mahier IM, Rizq WY, Safhi AY, Bukhary DM. Development and optimization of a tamsulosin nanostructured lipid carrier loaded with saw palmetto oil and pumpkin seed oil for treatment of benign prostatic hyperplasia. Drug Deliv. 2022;29(1):2579-91. doi: 10.1080/10717544.2022.2105448, PMID 35915055.

Andjelkovic M, Van Camp J, Trawka A, Verhe R. Phenolic compounds and some quality parameters of pumpkin seed oil. Euro J Lipid Sci & Tech. 2010;112(2):208-17. doi: 10.1002/ejlt.200900021.

Alhakamy NA, Fahmy UA, Ahmed OA. Attenuation of benign prostatic hyperplasia by optimized tadalafil loaded pumpkin seed oil-based self nanoemulsion: in vitro and in vivo evaluation. Pharmaceutics. 2019;11(12):1-13. doi: 10.3390/pharmaceutics11120640, PMID 31805693.

Csikos E, Horvath A, Acs K, Papp N, Balazs VL, Dolenc MS. Treatment of benign prostatic hyperplasia by natural drugs. Molecules. 2021;26(23):1-32. doi: 10.3390/molecules26237141, PMID 34885733.

Anastassakis K. Androgenetic alopecia from A to Z. 1st ed. Vol. 2, Androgenetic Alopecia From A to Z. Springer Cham; 2022. p. 193-7.

Kalwat JI. The use of serenoa repens (saw palmetto) in hair care products. BJSTR. 2019;13(1):9725-8. doi: 10.26717/BJSTR.2019.13.002348.

Zhang Y, Zhang P, Zhu T. Ovarian carcinoma biological nanotherapy: comparison of the advantages and drawbacks of lipid, polymeric, and hybrid nanoparticles for cisplatin delivery. Biomed Pharmacother. 2019;109(1):475-83. doi: 10.1016/j.biopha.2018.10.158, PMID 30399584.

Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771-82. doi: 10.1038/nrd2614, PMID 18758474.

Xin Y, Huang Q, Tang JQ, Hou XY, Zhang P, Zhang LZ. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett. 2016;379(1):24-31. doi: 10.1016/j.canlet.2016.05.023, PMID 27235607.

Nguyen CN, Nguyen TT, Nguyen HT, Tran TH. Nanostructured lipid carriers to enhance transdermal delivery and efficacy of diclofenac. Drug Deliv Transl Res. 2017;7(5):664-73. doi: 10.1007/s13346-017-0415-2, PMID 28776220.

Carbone C, Campisi A, Musumeci T, Raciti G, Bonfanti R, Puglisi G. FA-loaded lipid drug delivery systems: preparation, characterization and biological studies. Eur J Pharm Sci. 2014;52(1):12-20. doi: 10.1016/j.ejps.2013.10.003, PMID 24514450.

Vidlarova L, Hanus J, Vesely M, Ulbrich P, Stepanek F, Zbytovska J. Effect of lipid nanoparticle formulations on skin delivery of a lipophilic substance. Eur J Pharm Biopharm. 2016;108:289-96. doi: 10.1016/j.ejpb.2016.07.016, PMID 27449632.

Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1-2):121-8. doi: 10.1016/s0378-5173(02)00180-1, PMID 12176234.

Üner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie. 2006;61(5):375-86. PMID 16724531.

Aslam R, Tiwari V, Upadhyay P, Tiwari A. Original article revolutionizing therapeutic delivery: diosgenin-loaded solid lipid nanoparticles unleash advanced carriers. International Journal of Applied Pharmaceutics. 2024;16(1):124–33. doi: 10.22159/ijap.2024v16i1.49306.

lópez KL, Ravasio A, Gonzalez Aramundiz JV, Zacconi FC. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) prepared by microwave and ultrasound-assisted synthesis: promising green strategies for the nanoworld. Pharmaceutics. 2023;15(5):1-26. doi: 10.3390/pharmaceutics15051333, PMID 37242575.

El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: an approach to control the release and enhance the oral bioavailability on rabbits. PLOS ONE. 2018;13(8):e0203405. doi: 10.1371/journal.pone.0203405, PMID 30161251.

El-Say KM, El-Helw AR, Ahmed OA, Hosny KM, Ahmed TA, Kharshoum RM. Statistical optimization of controlled release microspheres containing cetirizine hydrochloride as a model for water-soluble drugs. Pharm Dev Technol. 2015;20(6):738-46. doi: 10.3109/10837450.2014.920353, PMID 24856961.

Kudarha R, Dhas NL, Pandey A, Belgamwar VS, Ige PP. Box-behnken study design for optimization of bicalutamide-loaded nanostructured lipid carrier: stability assessment. Pharm Dev Technol. 2015;20(5):608-18. doi: 10.3109/10837450.2014.908305, PMID 24785784.

Ferreira N, Viana T, Henriques B, Tavares DS, Jacinto J, Colonia J. Application of response surface methodology and box-behnken design for the optimization of mercury removal by Ulva sp J Hazard Mater. 2023;445:130405. doi: 10.1016/j.jhazmat.2022.130405, PMID 36437192.

Aodah AH, Hashmi S, Akhtar N, Ullah Z, Zafar A, Zaki RM. Formulation development, optimization by box-behnken design, and in vitro and ex vivo characterization of hexatriacontane-loaded transethosomal gel for antimicrobial treatment for skin infections. Gels. 2023;9(4):1-22. doi: 10.3390/gels9040322, PMID 37102934.

Patra S. Development, characterization and pharmacokinetic evaluation of optimized vildagliptin sustained release matrix tablet using box-behnken design. International Journal of Applied Pharmaceutics. 2024;16(1):214-23. doi: 10.22159/ijap.2024v16i1.48052.

Hosny KM, Aljaeid BM. Sildenafil citrate as oral solid lipid nanoparticles: a novel formula with higher bioavailability and sustained action for treatment of erectile dysfunction. Expert Opin Drug Deliv. 2014;11(7):1015-22. doi: 10.1517/17425247.2014.912212, PMID 24746063.

Li Y, Zhao X, Zu Y, Zhang Y. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization. Int J Pharm. 2015;490(1-2):324-33. doi: 10.1016/j.ijpharm.2015.05.070, PMID 26027492.

Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation. Int J Pharm. 2016;500(1-2):245-54. doi: 10.1016/j.ijpharm.2016.01.017, PMID 26775063.

Manconi M, Sinico C, Valenti D, lai F, Fadda AM. Niosomes as carriers for tretinoin. III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311(1-2):11-9. doi: 10.1016/j.ijpharm.2005.11.045, PMID 16439071.

El-Ridy MS, Abd ElRahman AA, Awad GM, Khalil RM, Younis MM. In vitro and in vivo evaluation of niosomes containing celecoxib. IJPSR. 2014;5(11):4677-88. doi: 10.13040/IJPSR.0975-8232.5(11).4677-88.

Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomedicine. 2013;8:1721-32. doi: 10.2147/IJN.S40674, PMID 23658490.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi: 10.1016/0022-1759(83)90303-4, PMID 6606682.

Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988;48(17):4827-33. PMID 3409223.

Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur J Pharm Biopharm. 2013;84(3):487-96. doi: 10.1016/j.ejpb.2013.01.005, PMID 23403015.

Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AO. Natamycin solid lipid nanoparticles-sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J Nanomedicine. 2019;14:2515-31. doi: 10.2147/IJN.S190502, PMID 31040672.

Madhusudhan B, Rambhau D, Apte SS, Gopinath D. Oral bioavailability of flutamide from 1-o-alkylglycerol stabilized o/w nanoemulsions. J Dispers Sci Technol. 2007;28(8):1254-61. doi: 10.1080/01932690701528241.

Chalikwar SS, Belgamwar VS, Talele VR, Surana SJ, Patil MU. Formulation and evaluation of nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf B Biointerfaces. 2012;97:109-16. doi: 10.1016/j.colsurfb.2012.04.027, PMID 22609590.

Araujo J, Gonzalez Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm. 2010;393(1-2):167-75. doi: 10.1016/j.ijpharm.2010.03.034, PMID 20362042.

Kumbhar DD, Pokharkar VB. Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: physicochemical investigations. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013;416:32-42. doi: 10.1016/j.colsurfa.2012.10.031.

Walbi IA, Ahmad MZ, Ahmad J, Algahtani MS, Alali AS, Alsudir SA. Development of a curcumin-loaded lecithin/chitosan nanoparticle utilizing a box-behnken design of experiment: formulation design and influence of process parameters. Polymers (Basel). 2022;14(18):1-17. doi: 10.3390/polym14183758, PMID 36145903.

Agrawal Y, Petkar KC, Sawant KK. Development, evaluation and clinical studies of acitretin-loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm. 2010;401(1-2):93-102. doi: 10.1016/j.ijpharm.2010.09.007, PMID 20858539.

WC. Ageing effects in parenteral fat emulsions: the role of fatty acids. International Journal of Pharmaceutics. 1987;39:33-7.

Chinsriwongkul A, Chareanputtakhun P, Ngawhirunpat T, Rojanarata T, Sila-on W, Ruktanonchai U. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech. 2012;13(1):150-8. doi: 10.1208/s12249-011-9733-8, PMID 22167418.

Guada M, Sebastian V, Irusta S, Feijoo E, Dios Vieitez Mdel C, Blanco Prieto MJ. Lipid nanoparticles for cyclosporine a administration: development, characterization, and in vitro evaluation of their immunosuppression activity. Int J Nanomedicine. 2015;10:6541-53. doi: 10.2147/IJN.S90849, PMID 26527872.

Aboud HM, El Komy MH, Ali AA, El Menshawe SF, Abd Elbary A. Development, optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery. AAPS PharmSciTech. 2016;17(6):1353-65. doi: 10.1208/s12249-015-0440-8, PMID 26743643.

Bondì ML, Craparo EF, Giammona G, Cervello M, Azzolina A, Diana P. Nanostructured lipid carriers-containing anticancer compounds: preparation, characterization, and cytotoxicity studies. Drug Deliv. 2007;14(2):61-7. doi: 10.1080/10717540600739914, PMID 17364869.

Chandratre SS, Dash AK. Multifunctional nanoparticles for prostate cancer therapy. AAPS PharmSciTech. 2015;16(1):98-107. doi: 10.1208/s12249-014-0202-z, PMID 25190362.

Mortazavi SM, Mohammadabadi MR, Khosravi Darani K, Mozafari MR. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J Biotechnol. 2007;129(4):604-13. doi: 10.1016/j.jbiotec.2007.02.005, PMID 17353061.

Shenoy VS, Gude RP, Murthy RS. In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines. Int Nano Lett. 2013;3(1):36. doi: 10.1186/2228-5326-3-36.

Tavano L, Aiello R, Ioele G, Picci N, Muzzalupo R. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: preparation, characterization and biological properties. Colloids Surf B Biointerfaces. 2014;118:7-13. doi: 10.1016/j.colsurfb.2014.03.016, PMID 24709252.

Danhier F, lecouturier N, Vroman B, Jerome C, Marchand Brynaert J, Feron O. Paclitaxel-loaded pegylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release. 2009;133(1):11-7. doi: 10.1016/j.jconrel.2008.09.086, PMID 18950666.

Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Mater Sci Eng C Mater Biol Appl. 2015 Nov;56:393-400. doi: 10.1016/j.msec.2015.06.049, PMID 26249606.

Dolatabadi S, Karimi M, Nasirizadeh S, Hatamipour M, Golmohammadzadeh S, Jaafari MR. Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J Drug Deliv Sci Technol. 2021;62:102352. doi: 10.1016/j.jddst.2021.102352.

Veerareddy PR, Bobbala SK. Enhanced oral bioavailability of isradipine via proniosomal systems. Drug Dev Ind Pharm. 2013;39(6):909-17. doi: 10.3109/03639045.2012.717945, PMID 22998221.

Published

07-07-2024

How to Cite

A. ALI, M., MOHAMED, M. I., M. EL-SAY, K., & MEGAHED, M. A. (2024). INNOVATIVE LIPIDIC NANOCARRIERS OF FLUTAMIDE ENHANCING ITS IN VITRO CYTOTOXICITY AND IN VIVO ORAL BIOAVAILABILITY: DESIGN, OPTIMIZATION, CHARACTERIZATION, AND PHARMACOKINETIC ASPECTS. International Journal of Applied Pharmaceutics, 16(4), 66–77. https://doi.org/10.22159/ijap.2024v16i4.51037

Issue

Section

Original Article(s)