GASTRORENTENTIVE HYDROGELS RESPONSIVE TO EXTERNAL STIMULI FOR NOVEL DRUG DELIVERY

Authors

  • GAURAV MORIYA Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India https://orcid.org/0009-0003-2629-2910
  • RUPA MAZUMDER Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India https://orcid.org/0000-0002-1888-548X
  • SWARUPANJALI PADHI Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India
  • RAKHI MISHRA Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Gautam Buddha Nagar, Uttar Pradesh-201306, India https://orcid.org/0000-0002-9292-3448

DOI:

https://doi.org/10.22159/ijap.2024v16i4.51051

Keywords:

Hydrogel, Crosslinking, Gastroretentive, Stimuli-responsive, Drug delivery, Recent advancement, Patents

Abstract

Hydrogels, or water-swollen polymers, are three-dimensional networks of polymeric chains with a high capacity for holding water inside their structure. Because of this special quality, they are helpful in many applications, such as tissue engineering, drug delivery, and wound healing. Tissue engineering, controlled drug release, smart devices, and magnetic fields are all made possible by their sensitivity to temperature, ionic strength variations, electric fields, pH changes, magnetic fields, and ultrasounds. The interesting potential of stimuli-dependent hydrogels for gastroretentive drug delivery in the Gastrointestinal Tract (GIT) is examined in this review article. A new strategy is provided by stimuli-responsive hydrogels, which change their characteristics in response to particular GIT environment triggers like pH, enzymes, or pressure. The article explores a range of stimuli-dependent hydrogels, such as those that react to enzymes, pH, and other stimuli. Hydrogel's latest developments and their use in GIT medication delivery are also examined. Promising research on these innovative drug delivery systems is highlighted in the review. The paper also examines patents about stimuli-dependent hydrogels, offering information about the intellectual property environment surrounding this technology. In summary, hydrogel systems combine the targeted response to GIT stimuli with the controlled release properties of hydrogels to hold immense potential for improved drug delivery and therapeutic efficacy.

Downloads

Download data is not yet available.

References

Peppas NA, Hoffman AS. Hydrogels. Biomater Sci. 2020:153-66. doi: 10.1016/B978-0-12-816137-1.00014-3

Ullah F, Othman MB, Javed F, Ahmad Z, Md Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl. 2015;57:414-33. doi: 10.1016/j.msec.2015.07.053, PMID 26354282.

Okay O. General properties of hydrogels. Mater Chem Front. 2010:1-14.

Rosiak JM, Yoshii F. Hydrogels and their medical applications. Nucl Instrum Methods Phys Res Sect B. 1999;151(1-4):56-64. doi: 10.1016/S0168-583X(99)00118-4.

Madduma Bandarage US, Madihally SV. Synthetic hydrogels: synthesis, novel trends, and applications. J Appl Polym Sci. 2021;138(19):50376. doi: 10.1002/app.50376.

Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345-60. doi: 10.1002/adma.200501612.

Chirani N, Yahia l, Gritsch l, Motta FL, Chirani S, Fare S. History and applications of hydrogels. J Biomed Sci. 2015;4(02):1-23.

Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ. Bioresponsive hydrogels. Mater Today. 2007;10(4):40-8. doi: 10.1016/S1369-7021(07)70049-4.

Zhang YS, Khademhosseini AJ. Advances in engineering hydrogels. Science. 2017;356(6337). doi: 10.1126/science.aaf3627, PMID 28473537.

Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):e03719. doi: 10.1016/j.heliyon.2020.e03719, PMID 32280802.

Chen J, Park H, Park K. Synthesis of super porous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res. 1999;44(1):53-62. doi: 10.1002/(sici)1097-4636(199901)44:1<53::aid-jbm6>3.0.co;2-w, PMID 10397904.

Gemeinhart RA, Chen J, Park H, Park K. pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed. 2000;11(12):1371-80. doi: 10.1163/156856200744390, PMID 11261878.

Park H, Park K, Kim D. Preparation and swelling behavior of chitosan‐based superporous hydrogels for gastric retention application. J Biomed Mater Res A. 2006;76(1):144-50. doi: 10.1002/jbm.a.30533, PMID 16258961.

Gemeinhart RA, Park H, Park K. Pore structure of superporous hydrogels. Polym Adv Technol. 2000;11(8-12):617-25. doi: 10.1002/1099-1581(200008/12)11:8/12<617::AID-PAT12>3.0.CO;2-L.

Omidian H, Park K, Rocca JG. Recent developments in superporous hydrogels. J Pharm Pharmacol. 2007;59(3):317-27. doi: 10.1211/jpp.59.3.0001, PMID 17331335.

Lodhi BA, Hussain MA, Sher M, Haseeb MT, Ashraf MU, Hussain SZ. Polysaccharide-based super porous, superabsorbent, and stimuli-responsive hydrogel from sweet basil: a novel material for sustained drug release. Adv Polym Technol. 2019;2019:1-11. doi: 10.1155/2019/9583516.

Chavda H, Patel C. Chitosan superporous hydrogel composite-based floating drug delivery system: a newer formulation approach. J Pharm Bioallied Sci. 2010;2(2):124-31. doi: 10.4103/0975-7406.67010, PMID 21814446.

Jhawat V, Gulia M, Maddiboyina B, Dutt R, Gupta S. Fate and applications of super porous hydrogel systems: a review. Cnanom. 2020;10(4):326-41. doi: 10.2174/2468187310999200819201555.

Vishal Gupta N, Shivakumar HG. Preparation and characterization of super porous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate. Daru. 2010;18(3):200-10. PMID 22615618.

Jin X, Wei C, Wu C, Zhang W. Gastroretentive core-shell hydrogel assembly for sustained release of metformin hydrochloride. Eur Polym J. 2022;170:111155. doi: 10.1016/j.eurpolymj.2022.111155.

Pasam V, Kotra V, Desu PK. Formulation and in vitro evaluation of super porous hydrogel-based gastroretentive drug delivery system of vildagliptin. JRP. 2019;23(5):873-85. doi: 10.35333/jrp.2019.35.

Pal R, Pandey P, Nogai L, Arushi A, Anand A, Suthar P. The future perspectives and novel approach on gastro retentive drug delivery system (grdds) with currrent state. J Popul Ther Clin Pharmacol. 2023;30(17):594-613. doi: 10.53555/jptcp.v30i17.2852.

Yang Z, McClements DJ, Li C, Sang S, Chen L, Long J. Targeted delivery of hydrogels in human gastrointestinal tract: a review. Food Hydrocoll. 2023;134:108013. doi: 10.1016/j.foodhyd.2022.108013.

Anothra P, Pradhan D, Halder J, Ghosh G, Rath G. Gastroretentive drug delivery system in cancer chemotherapy. Curr Drug Deliv. 2023;20(5):483-96. doi: 10.2174/1567201819666220608141124, PMID 35676836.

Landge P. Lavande J, Swami A, Dharashive v. A review on gastroretentive drug delivery system. Res J Pharm Dosage Forms Technol. 2023;15(1):62-8.

Dhiman S, Philip N, Gurjeet Singh T, Babbar R, Garg N, Diwan V. An insight on novel approaches and perspectives for gastro-retentive drug delivery systems. Curr Drug Deliv. 2023;20(6):708-29. doi: 10.2174/1567201819666220819200236, PMID 35993477.

Singh P, Puranik SB. A system for gastro retentive drug distribution: a review. Anveshana’s Int J Res Pharm Life Sci. 2022;7(4).

Garg S, Garg A, Vishwavidyalaya R. Hydrogel: classification, properties, preparation and technical features. Asian J Biomater Res. 2016;2(6):163-70.

Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules. 2013;14(2):297-301. doi: 10.1021/bm301844u, PMID 23347052.

Chandrawati R. Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med (Maywood). 2016;241(9):972-9. doi: 10.1177/1535370216647186, PMID 27188515.

Ozmen MM, Okay O. Superfast responsive ionic hydrogels with controllable pore size. Polymer. 2005;46(19):8119-27. doi: 10.1016/j.polymer.2005.06.102.

Helminger M, Wu B, Kollmann T, Benke D, Schwahn D, Pipich V. Synthesis and characterization of gelatin‐based magnetic hydrogels. Adv Funct Mater. 2014;24(21):3187-96. doi: 10.1002/adfm.201303547, PMID 25844086.

Kabir SM, Sikdar PP, Haque B, Bhuiyan MA, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater. 2018;7(3):153-74. doi: 10.1007/s40204-018-0095-0, PMID 30182344.

Xin F, lyu Q. A review on thermal properties of hydrogels for electronic devices applications. Gels. 2022;9(1):7. doi: 10.3390/gels9010007, PMID 36661775.

Arrizabalaga JH, Smallcomb M, Abu-Laban M, liu Y, Yeingst TJ, Dhawan A. Ultrasound-responsive hydrogels for on-demand protein release. ACS Appl Bio Mater. 2022;5(7):3212-8. doi: 10.1021/acsabm.2c00192, PMID 35700312.

Van der linden HJ, Herber S, Olthuis W, Bergveld P. Stimulus-sensitive hydrogels and their applications in chemical (micro) analysis. Analyst. 2003;128(4):325-31. doi: 10.1039/b210140h, PMID 12741636.

Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569-79. doi: 10.1016/s1359-6446(02)02255-9, PMID 12047857.

Zhao C, Zhuang X, He P, Xiao C, He C, Sun J. Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer. 2009;50(18):4308-16. doi: 10.1016/j.polymer.2009.07.010.

Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci. 2015;10(1):1-16. PMID 26430453.

Xiao L, Zhu J, londono DJ, Pochan DJ, Jia X. Mechano-responsive hydrogels crosslinked by block copolymer micelles. Soft Matter. 2012;8(40):10233-7. doi: 10.1039/C2SM26566D, PMID 23024698.

Neubauer JW, Hauck N, Mannel MJ, Seuss M, Fery A, Thiele J. Mechanoresponsive hydrogel particles as a platform for three-dimensional force sensing. ACS Appl Mater Interfaces. 2019;11(29):26307-13. doi: 10.1021/acsami.9b04312, PMID 31298522.

Whyte W, Freedman BR, Fan Y, Varela CE, Singh M, Mmolendez K. Mechanoresponsive drug release from a flexible, tissue‐adherent, hybrid hydrogel actuator. Advanced Materials. 2023:2303301. https://doi.org/10.1002/adma.202303301.

Fang K, Wang R, Zhang H, Zhou L, Xu T, Xiao Y. Mechano-responsive, tough, and antibacterial zwitterionic hydrogels with controllable drug release for wound healing applications. ACS Appl Mater Interfaces. 2020;12(47):52307-18. doi: 10.1021/acsami.0c13009, PMID 33183010.

Zarzar LD, Aizenberg J. Stimuli-responsive chemomechanical actuation: a hybrid materials approach. Acc Chem Res. 2014;47(2):530-9. doi: 10.1021/ar4001923, PMID 24283993.

Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-induced drug release from stimuli-responsive hydrogels. Gels. 2022;8(9):554. doi: 10.3390/gels8090554, PMID 36135267.

Murdan S. Electro-responsive drug delivery from hydrogels. J Control Release. 2003;92(1-2):1-17. doi: 10.1016/s0168-3659(03)00303-1, PMID 14499181.

Longo GS, Olvera de la Cruz MO, Szleifer I. Controlling swelling/deswelling of stimuli-responsive hydrogel nanofilms in electric fields. Soft Matter. 2016;12(40):8359-66. doi: 10.1039/c6sm01172a, PMID 27714330.

Kolosnjaj Tabi J, Gibot L, Fourquaux I, Golzio M, Rols MP. Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv Drug Deliv Rev. 2019;138:56-67. doi: 10.1016/j.addr.2018.10.017, PMID 30414494.

Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. Mater Horiz. 2023;10(9):3325-50. doi: 10.1039/d3mh00399j, PMID 37387121.

Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli‐responsive nanocomposite hydrogels for biomedical applications. Adv Funct Materials. 2021;31(8):2005941. doi: 10.1002/adfm.202005941.

Jin Y, Heo H, Walker E, Krokhin A, Choi TY, Neogi A. The effects of temperature and frequency dispersion on sound speed in bulk poly (Vinyl Alcohol) poly (N-isopropylacrylamide) hydrogels caused by the phase transition. Ultrasonics. 2020;104:105931. doi: 10.1016/j.ultras.2019.05.004, PMID 32156431.

Choi JG, Gwac H, Jang Y, Richards C, Warren H, Spinks G. Poly(N-isopropylacrylamide) hydrogel for diving/surfacing device. Micromachines. 2021;12(2):210. doi: 10.3390/mi12020210, PMID 33669511.

Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J. 2019;120:109220. doi: 10.1016/j.eurpolymj.2019.109220.

Jiang H, Tovar Carrillo K, Kobayashi TJ. Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix. Ultrason Sonochem. 2016;32:398-406. doi: 10.1016/j.ultsonch.2016.04.008, PMID 27150786.

Zhang A, Jung K, Li A, liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog Polym Sci. 2019;99:101164. doi: 10.1016/j.progpolymsci.2019.101164.

Ebrahimi R. The study of factors affecting the swelling of ultrasound-prepared hydrogel. Polym Bull. 2019;76(2):1023-39. doi: 10.1007/s00289-018-2423-x.

Traitel T, Goldbart R, Kost J. Smart polymers for responsive drug-delivery systems. J Biomater Sci Polym Ed. 2008;19(6):755-67. doi: 10.1163/156856208784522065, PMID 18534095.

Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J. 2019;120:109220. doi: 10.1016/j.eurpolymj.2019.109220.

Chandan R, Mehta S, Banerjee R. Ultrasound-responsive carriers for therapeutic applications. ACS Biomater Sci Eng. 2020;6(9):4731-47. doi: 10.1021/acsbiomaterials.9b01979, PMID 33455210.

Rokita B, Rosiak JM, Ulanski P. Ultrasound-induced cross-linking and formation of macroscopic covalent hydrogels in aqueous polymer and monomer solutions. Macromolecules. 2009;42(9):3269-74. doi: 10.1021/ma802565p.

Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N. Removal of toxic metal ions with magnetic hydrogels. Water Res. 2009;43(17):4403-11. doi: 10.1016/j.watres.2009.06.058, PMID 19625066.

Zhang J, Huang Q, Du J. Recent advances in magnetic hydrogels. Polym Int. 2016;65(12):1365-72. doi: 10.1002/pi.5170.

Gila Vilchez C, Bonhome Espinosa AB, Kuzhir P, Zubarev A, Duran JD, lopez-Lopez MT. Rheology of magnetic alginate hydrogels. J Rheol. 2018;62(5):1083-96. doi: 10.1122/1.5028137.

Li Y, Chen Y, Lu T, Huang G, Zhang X, Li B. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater. 2013;23(6):660-72.

Hwang DK, Dendukuri D, Doyle PS. Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip. 2008;8(10):1640-7. doi: 10.1039/b805176c, PMID 18813385.

Paulino AT, Guilherme MR, de Almeida EA, Pereira AG, Muniz EC, Tambourgi EB. One-pot synthesis of a chitosan-based hydrogel as a potential device for magnetic biomaterial. Journal of Magnetism and Magnetic Materials. 2009;321(17):2636-42. doi: 10.1016/j.jmmm.2009.03.078.

Peppas NA, Bures CD. Glucose-responsive hydrogels. Adv Mater. 2006;112:10.

Ehrick JD, luckett MR, Khatwani S, Wei Y, Deo SK, Bachas LG. Glucose responsive hydrogel networks based on protein recognition. Macromol Biosci. 2009;9(9):864-8. doi: 10.1002/mabi.200800337, PMID 19434674.

Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading, and release. Pharm Res. 1992;9(3):283-90. doi: 10.1023/a:1015887213431, PMID 1614957.

Kushwaha SK, Saxena P, Rai A. Stimuli sensitive hydrogels for ophthalmic drug delivery: a review. Int J Pharm Investig. 2012;2(2):54-60. doi: 10.4103/2230-973X.100036, PMID 23119233.

Van der linden HJ, Herber S, Olthuis W, Bergveld P. Stimulus-sensitive hydrogels and their applications in chemical (micro) analysis. Analyst. 2003;128(4):325-31. doi: 10.1039/b210140h, PMID 12741636.

Shaikh Z. Design and development of topical hydrogel formulation of irbisartan. Int J Curr Pharm Sci. 2019;11(4):79-83. doi: 10.22159/ijcpr.2019v11i4.34924.

Nebhani L, Choudhary V, Adler HP, Kuckling D. pH and metal ion-sensitive hydrogels based on N-[2-(dimethylaminoethyl)acrylamide]. Polymers. 2016;8(6). doi: 10.3390/polym8060233, PMID 30979328.

Chen X, Li W, Zhong W, Lu Y, Yu T. pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. J Appl Polym Sci. 1997;65(11):2257-62. doi: 10.1002/(SICI)1097-4628(19970912)65:11<2257::AID-APP23>3.0.CO;2-Z.

Masteikova R, Chalupova Z, Sklubalova Z. Stimuli-sensitive hydrogels in controlled and sustained drug delivery. Medicina (Kaunas). 2003;39(2)Suppl 2:19-24. PMID 14617853.

Xing Y, Zeng B, Yang W. Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol. 2022;10:1075670.

Jochum FD, Theato P. Temperature and light-responsive smart polymer materials. Chem Soc Rev. 2013;42(17):7468-83. doi: 10.1039/c2cs35191a, PMID 22868906.

Jiang Z, Tan ML, Taheri M, Yan Q, Tsuzuki T, Gardiner MG. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew Chem Int Ed Engl. 2020;59(18):7049-56. doi: 10.1002/anie.201916058, PMID 32167650.

Zhao YL, Stoddart JF. Azobenzene-based light-responsive hydrogel system. Langmuir. 2009;25(15):8442-6. doi: 10.1021/la804316u, PMID 20050041.

Dai L, Ma M, Xu J, Si C, Wang X, Liu Z. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem Mater. 2020;32(10):4324-30. doi: 10.1021/acs.chemmater.0c01198.

Cao J, Zhao Y, Jin S, Li J, Wu P, Luo Z. Flexible lignin-based hydrogels with self-healing and adhesive ability driven by noncovalent interactions. Chem Eng J. 2022;429:132252. doi: 10.1016/j.cej.2021.132252.

Yuan H, Peng J, Ren T, luo Q, luo Y, Zhang N. Novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots for highly efficient adsorption and detection of Cr(VI). Sci Total Environ. 2021;760:143395. doi: 10.1016/j.scitotenv.2020.143395, PMID 33190900.

Rico Garcia D, Ruiz Rubio L, Perez Alvarez L, Hernandez Olmos SL, Guerrero Ramirez GL, Vilas Vilela JL. Lignin-based hydrogels: synthesis and applications. Polymers. 2020;12(1):81. doi: 10.3390/polym12010081, PMID 31947714.

Meng Y, Lu J, Cheng Y, Li Q, Wang H. Lignin-based hydrogels: a review of preparation, properties, and application. Int J Biol Macromol. 2019;135:1006-19. doi: 10.1016/j.ijbiomac.2019.05.198, PMID 31154040.

Das S, Kumar V, Tiwari R, Singh L, Singh S. Recent advances in hydrogels for biomedical applications. Asian J Pharm Clin Res. 2018;11(11):62-8. doi: 10.22159/ajpcr.2018.v11i11.27921.

Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B. 2018;6(3):510-7. doi: 10.1039/c7tb01851g, PMID 32254530.

Wang J, Kaplan JA, Colson YL, Grinstaff MW. Mechanoresponsive materials for drug delivery: harnessing forces for controlled release. Adv Drug Deliv Rev. 2017;108:68-82. doi: 10.1016/j.addr.2016.11.001, PMID 27856307.

Sugawara A, Asoh TA, Takashima Y, Harada A, Uyama H. Mechano-responsive hydrogels driven by the dissociation of the host-guest complex. ACS Macro Lett. 2021;10(7):971-7. doi: 10.1021/acsmacrolett.1c00357, PMID 35549204.

Erol O, Pantula A, Liu W, Gracias DH. Transformer hydrogels: a review. Adv Materials Technologies. 2019;4(4):1900043. doi: 10.1002/admt.201900043.

El-Husseiny HM, Mady EA, Hamabe l, Abugomaa A, Shimada K, Yoshida T. Smart/stimuli-responsive hydrogels: cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio. 2022;13:100186.

Chen P, Wang Q, Wan X, Yang M, Liu C, Xu C. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy. 2021;89:106327. doi: 10.1016/j.nanoen.2021.106327.

Kubota T, Kurashina Y, Zhao J, Ando K, Onoe H. Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Mater Des. 2021;203:109580. doi: 10.1016/j.matdes.2021.109580.

Tang J, Yin Q, Qiao Y, Wang T. Shape morphing of hydrogels in alternating magnetic field. ACS Appl Mater Interfaces. 2019;11(23):21194-200. doi: 10.1021/acsami.9b05742, PMID 31117469.

Zhang Y, Wang Y, Wang H, Yu Y, Zhong Q, Zhao Y. Super‐elastic magnetic structural color hydrogels. Small. 2019;15(35):e1902198. doi: 10.1002/smll.201902198, PMID 31293062.

Tsai YL, Theato P, Huang CF, Hsu Sh. A 3D-printable, glucose-sensitive and thermoresponsive hydrogel as sacrificial materials for constructs with vascular-like channels. Appl Mater Today. 2020;20:100778. doi: 10.1016/j.apmt.2020.100778.

Lin K, Yi J, Mao X, Wu H, Zhang lM, Yang l. Glucose-sensitive hydrogels from covalently modified carboxylated pullulan and concanavalin a for smart controlled release of insulin. React Funct Polym. 2019;139:112-9.

Tong MQ, Luo lZ, Xue PP, Han YH, Wang lF, Zhuge DL, Yao Q, Chen B, Zhao YZ, Xu HL. Glucose-responsive hydrogel enhances the preventive effect of insulin and liraglutide on diabetic nephropathy of rats. Acta Biomater. 2021;122:111-32. doi: 10.1016/j.actbio.2021.01.007.

Andrade F, Roca Melendres MM, Duran Lara EF, Rafael D, Schwartz S Jr. Stimuli-responsive hydrogels for cancer treatment: the role of pH, light, ionic strength and magnetic field. Cancers (Basel). 2021;13(5):1164. doi: 10.3390/cancers13051164, PMID 33803133.

Zhou H, Dong G, Gao G, Du R, Tang X, Ma Y. Hydrogel-based stimuli-responsive micromotors for biomedicine. Cyborg Bionic Syst. 2022;2022:9852853. doi: 10.34133/2022/9852853, PMID 36285306.

Lv SW, Liu Y, Xie M, Wang J, Yan XW, Li Z. Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells. ACS Nano. 2016;10(6):6201-10. doi: 10.1021/acsnano.6b02208, PMID 27299807.

Jiang Z, Tan ML, Taheri M, Yan Q, Tsuzuki T, Gardiner MG. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew Chem Int Ed Engl. 2020;59(18):7049-56. doi: 10.1002/anie.201916058, PMID 32167650.

Wei S, Chen W, Li Z, Liu Z, Xu A. Synthesis of cationic biomass lignosulfonate hydrogel for the efficient adsorption of Cr(VI) in wastewater with low pH. Environ Technol. 2023;44(14):2134-47. doi: 10.1080/09593330.2021.2024274, PMID 34962213.

Dominguez Robles J, Peresin MS, Tamminen T, Rodriguez A, Larraneta E, Jaaskelainen AS. Lignin-based hydrogels with ”super-swelling” capacities for dye removal. Int J Biol Macromol. 2018;115:1249-59. doi: 10.1016/j.ijbiomac.2018.04.044, PMID 29655884.

Mazloom N, Khorassani R, Zohuri GH, Emami H, Whalen J. Development and characterization of lignin‐based hydrogel for use in agricultural soils: preliminary evidence. Clean Soil Air Water. 2019;47(11):1900101. doi: 10.1002/clen.201900101.

Martin R, Reddy S, Sacks J, Li X, Cho BH, Mao HM. Fiber-hydrogel composite surgical meshes for tissue repair. United States Patent US10471181B2; 2019.

Mansmann KA. Hydrogels having charged surfaces for cartilage replacement. United States Patent US9192655B2; 2005.

Niemann N, Jankovic J. Real-world experience with VMAT2 inhibitors. Clin Neuropharmacol. 2019;42(2):37-41. doi: 10.1097/WNF.0000000000000326, PMID 30870235.

Meijerink HJ, Changoer l, Blom W, Visser MR, Frijlink HW, Eissens AC. Gastro-retentive drug delivery system. Mexico patent MX2015000760A; 2023.

Patrick TJ, Ramey CB, Tudor l, Axelrod MA. Hydrogel implants with porous materials and methods. United States Patent US9907663B2; 2018.

Sabbah HN. Elamipretide for barth syndrome cardiomyopathy: gradual rebuilding of a failed power grid. Heart Fail Rev. 2022;27(5):1911-23. doi: 10.1007/s10741-021-10177-8, PMID 34623544.

Stanton Jr VP, Rioux PR. Compositions for controlled release of cysteamine and systemic treatment of cysteamine sensitive disorders. United States Patent US11173135B2; 2017.

Baron A, Brown MR, Jones CR. Chemosensory receptor ligand-based therapies. WIPO patent WO2013158928A2; 2014.

Jain PR, Chaudhari SV. Modified release drug powder composition comprising gastro-retentive RAFT forming systems having trigger pulse drug release. WIPO patent WO2019126214A1; 2022.

Menachem AB, Zalit I. Expandable gastroretentive dosage form. European Patent EP3148514A4; 2022.

Herbig SM, Krishnaswami S, Kushner IV J, Lamba M, Thomas C. Tofacitinib oral sustained release dosage forms. European Patent EP2968155B1; 2023.

Published

07-07-2024

How to Cite

MORIYA, G., MAZUMDER, R., PADHI, S., & MISHRA, R. (2024). GASTRORENTENTIVE HYDROGELS RESPONSIVE TO EXTERNAL STIMULI FOR NOVEL DRUG DELIVERY. International Journal of Applied Pharmaceutics, 16(4), 1–14. https://doi.org/10.22159/ijap.2024v16i4.51051

Issue

Section

Review Article(s)