QUALITY BY DESIGN ENABLES FORMULATION DEVELOPMENT OF ZOLMITRIPTAN LOADED ETHOSOMAL INTRA-NASAL GEL FOR BRAIN TARGETING: IN VITRO AND EX VIVO EVALUATION

Authors

  • NAGADIVYA NERELLA School of Pharmacy, Anurag University, Venkatapur, Ghatkesar Rd, Hyderabad, Telangana-500088, India https://orcid.org/0009-0002-9162-3264
  • BAKSHI VASUDHA School of Pharmacy, Anurag University, Venkatapur, Ghatkesar Rd, Hyderabad, Telangana-500088, India https://orcid.org/0000-0002-0819-2532

DOI:

https://doi.org/10.22159/ijap.2024v16i4.51066

Keywords:

Ex vivo permeation, Intranasal administration, Zeta potential, Vesicle size, Film hydration, Central composite design

Abstract

Objective: Although zolmitriptan's 50% oral bioavailability and recurrence of migraine-associated disorders make it one of the most essential drugs for managing the illness, adverse effects linked to dosage are still a concern. A unique intra-nasal brain targeting strategy may significantly extend the drug's residence duration at the absorption site and resolve the current problems.

Methods: To effectively adjust the drug's residence via the intra-nasal route, the current study focuses on the development of zolmitriptan-loaded ethosomal gel with the help of soya lecithin, ethanol, poloxamer 407, and HPMC K100M utilizing the thin film hydration technique. The optimized formulation (F12) was completely characterized in terms of polydispersity index, vesicle size (nm), and entrapment efficiency (%). In vitro drug release at 24 h, stability study, and ex-vivo skin permeation pharmacodynamic studies were all evaluated.

Results: The ethosomal formulations were optimized using 32 Central Composite Design (CCD) about the observed responses, which comprised vesicle size, entrapment efficiency, and percent drug release after 24 h, all included in this study. The optimal size range and zeta potential for the F12 formulation were determined to be 110.23 nm and -35.69, respectively. The generated drug-loaded ethosomal gel was spherical with a consistent size distribution and particle size. Morphological studies showed that Scanning Electron Microscope (SEM) was utilized to better study spherical multilamellar vesicles. The optimized ethosomal gel of zolmitriptan was determined to meet the stability criterion, as the Critical Quality Attributes (CQAs) did not vary significantly during the study period.

Conclusion: For all formulations, the F12 batch showed vesicle size (110.23 nm), entrapment efficiency (82.02%), and drug release percentage of 89.26% at 24 h.

Downloads

Download data is not yet available.

References

Goadsby PJ, lipton RB, Ferrari MD. Migraine-current understanding and treatment. N Engl J Med. 2002;346(4):257-70. doi: 10.1056/NEJMra010917, PMID 11807151.

Palmer KJ, Spencer CM. Zolmitriptan. CNS Drugs. 1997;7(6):468-78. doi: 10.2165/00023210-199707060-00005.

Cittadini E, May A, Straube A, Evers S, Bussone G, Goadsby PJ. Effectiveness of intranasal zolmitriptan in acute cluster headache: a randomized, placebo-controlled, double-blind crossover study. Arch Neurol. 2006;63(11):1537-42. doi: 10.1001/archneur.63.11.nct60002, PMID 16966497.

Mahakalkar NG, Upadhye KP. Zolmitriptan nasal in-situ gel using sterculia foetida linn gum as natural mucoadhesive polymer. Int J Pharm Sci Rev Res. 2013;22(2):206-13.

Dowson AJ, MacGregor EA, Purdy RA, Becker WJ, Green J, Levy SL. Zolmitriptan orally disintegrating tablet is effective in the acute treatment of migraine. Cephalalgia. 2002;22(2):101-6. doi: 10.1046/j.1468-2982.2002.00319.x, PMID 11972576.

Belvis R, Pagonabarraga J, Kulisevsky J. Individual triptan selection in migraine attack therapy. Recent Pat CNS Drug Discov. 2009;4(1):70-81. doi: 10.2174/157488909787002555, PMID 19149716.

Silberstein SD. Migraine symptoms: results of a survey of self-reported migraineurs. Headache. 1995;35(7):387-96. doi: 10.1111/j.1526-4610.1995.hed3507387.x, PMID 7672955.

Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1-2):60-6. doi: 10.1016/j.ijpharm.2006.05.027, PMID 16806755.

Shelke S, Shahi S, Jalalpure S, Dhamecha D, Shengule S. Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. J Drug Deliv Sci Technol. 2015;29:238-44. doi: 10.1016/j.jddst.2015.08.003.

Barupal AK, Gupta V, Ramteke S. Preparation and characterization of ethosomes for topical delivery of aceclofenac. Indian J Pharm Sci. 2010;72(5):582-6. doi: 10.4103/0250-474X.78524, PMID 21694989.

Sarwa KK, Das PJ, Mazumder B. A nanovesicle topical formulation of Bhut Jolokia (hottest capsicum): a potential anti-arthritic medicine. Expert Opin Drug Deliv. 2014;11(5):661-76. doi: 10.1517/17425247.2014.891581, PMID 24661126.

Jain SK, Chourasia MK, Jain AK, Jain RK, Shrivastava AK. Development and characterization of mucoadhesive microspheres bearing salbutamol for nasal delivery. Drug Deliv. 2004;11(2):113-22. doi: 10.1080/10717540490280750, PMID 15200010.

Solomon GD, Cady RK, Klapper JA, Earl NL, Saper JR, Ramadan NM. Clinical efficacy and tolerability of 2.5 mg zolmitriptan for the acute treatment of migraine. The 042 clinical trial study group. Neurology. 1997;49(5):1219-25. doi: 10.1212/wnl.49.5.1219, PMID 9371897.

MacGregor EA, Brandes J, Eikermann A. Migraine prevalence and treatment patterns: the global migraine and zolmitriptan evaluation survey. Headache. 2003;43(1):19-26. doi: 10.1046/j.1526-4610.2003.03004.x, PMID 12864754.

Maheshwari RG, Tekade RK, Sharma PA, Darwhekar G, Tyagi A, Patel RP. Ethosomes and ultra deformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi Pharm J. 2012;20(2):161-70. doi: 10.1016/j.jsps.2011.10.001, PMID 23960788.

Majithiya RJ, Ghosh PK, Umrethia ML, Murthy RS. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech. 2006;7(3):67. doi: 10.1208/pt070367, PMID 17025248.

Omar SM, AbdAlla FI, Abdelgawad NM. Preparation and optimization of fast-disintegrating tablet containing naratriptan hydrochloride using D-optimal mixture design. AAPS PharmSciTech. 2018;19(6):2472-87. doi: 10.1208/s12249-018-1061-9, PMID 29869307.

Shehu IA, Shehu UM, Datta A. Intranasal delivery in managing antibiotic resistance in brain infections. Int J Curr Pharm Sci. 2022;14(2):1-4. doi: 10.22159/ijcpr.2022v14i2.1559.

Tepper SJ, Chen S, Reidenbach F, Rapoport AM. Intranasal zolmitriptan for the treatment of acute migraine. Headache. 2013;53Suppl 2:62-71. doi: 10.1111/head.12181, PMID 24024604.

El Taweel MM, Aboul Einien MH, Kassem MA, Elkasabgy NA. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose-to-brain delivery. Pharmaceutics. 2021;13(11):1828. doi: 10.3390/pharmaceutics13111828, PMID 34834242.

Mohamed MI, Abdelbary AA, Kandil SM, Mahmoud TM. Preparation and evaluation of optimized zolmitriptan niosomal emulgel. Drug Dev Ind Pharm. 2019;45(7):1157-67. doi: 10.1080/03639045.2019.1601737, PMID 30919700.

Liu C, Fang L. Drug in an adhesive patch of zolmitriptan: formulation and in vitro /in vivo correlation. AAPS PharmSciTech. 2015;16(6):1245-53. doi: 10.1208/s12249-015-0303-3, PMID 25771739.

Ammar HO, Mohamed MI, Tadros MI, Fouly AA. Transdermal delivery of ondansetron hydrochloride via bilosomal systems: in vitro, ex vivo, and in vivo characterization studies. AAPS PharmSciTech. 2018;19(5):2276-87. doi: 10.1208/s12249-018-1019-y, PMID 29845503.

Misra SK, Pathak K. Nose-to-brain targeting via nanoemulsion: significance and evidence. Colloids Interfaces. 2023;7(1):23. doi: 10.3390/colloids7010023.

Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 2008;70(3):735-40. doi: 10.1016/j.ejpb.2008.07.005, PMID 18684400.

Pathan IB, Jaware BP, Shelke S, Ambekar W. Curcumin loaded ethosomes for transdermal application: formulation, optimization, in vitro and in vivo study. J Drug Deliv Sci Technol. 2018;44:49-57. doi: 10.1016/j.jddst.2017.11.005.

Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1-2):60-6. doi: 10.1016/j.ijpharm.2006.05.027, PMID 16806755.

Dahlof CG, linde M, Kerekes E. Zolmitriptan nasal spray provides fast relief of migraine symptoms and is preferred by patients: a swedish study of preference in clinical practice. J Headache Pain. 2004;5(4):237-42. doi: 10.1007/s10194-004-0132-3.

Hamzah ML, Kassab HJ. Formulation and characterization of intranasal drug delivery of rizatriptan-loaded binary ethosomes gel for brain targeting. Nanotechnol Sci Appl. 2024;17(17):1-19. doi: 10.2147/NSA.S442951, PMID 38249545.

Nimisha SK, Singh AK. Formulation and evaluation of sea buckthorn leaf extract loaded ethosomal gel. Asian J Pharm Clin Res. 2015;8(5):316-9.

Mohananaidu K, Chatterjee B, Mohamed F, Mahmood S, Hamed Almurisi S. Thermoreversible carbamazepine in situ gel for intranasal delivery: development and in vitro, ex vivo evaluation. AAPS PharmSciTech. 2022;23(8):288. doi: 10.1208/s12249-022-02439-x, PMID 36271212.

Dayan N, Touitou E. Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials. 2000;21(18):1879-85. doi: 10.1016/s0142-9612(00)00063-6, PMID 10919691.

Bhalerao AV, lonkar SL, Deshkar SS. Nasal mucoadhesive in situ gel of ondansetron hydrochloride. Indian J Pharm Sci. 2009;71:711-3.

El Taweel MM, Aboul-Einien MH, Kassem MA, Elkasabgy NA. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose-to-brain delivery. Pharmaceutics. 2021;13(11):1828. doi: 10.3390/pharmaceutics13111828, PMID 34834242.

Thakkar H, Vaghela D, Patel BP. Brain targeted intranasal in-situ gelling spray of paroxetine: formulation, characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2021;62:102317. doi: 10.1016/j.jddst.2020.102317.

Shelke S, Shahi S, Jalalpure S, Dhamecha D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J Liposome Res. 2016 Dec;26(4):313-23. doi: 10.3109/08982104.2015.1132232, PMID 26758957.

Grace XF, KS, SS. Development of terminalia chebula-loaded ethosomal gel for transdermal drug delivery. Asian J Pharm Clin Res. 2018;11(12):380-3. doi: 10.22159/ajpcr.2018.v11i12.20764.

Shin BK, Baek EJ, Choi SG, Davaa E, Nho YC, Lim YM. Preparation and irradiation of pluronic F127-based thermoreversible and mucoadhesive hydrogel for local delivery of naproxen. Drug Dev Ind Pharm. 2013;39(12):1874-80. doi: 10.3109/03639045.2012.665925, PMID 22409199.

Deleu D, Hanssens Y. Current and emerging second-generation triptans in acute migraine therapy: a comparative review. J Clin Pharmacol. 2000;40(7):687-700. doi: 10.1177/00912700022009431, PMID 10883409.

Ghose D, Patra CN, Ravi Kumar BV, Swain S, Jena BR, Choudhury P. QbD-based formulation optimization and characterization of polymeric nanoparticles of cinacalcet hydrochloride with improved biopharmaceutical attributes. Turk J Pharm Sci. 2021 Sep 1;18(4):452-64. doi: 10.4274/tjps.galenos.2020.08522, PMID 34496552.

Beg S, Swain S, Singh HP, Patra ChN, Rao ME. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech. 2012;13(4):1416-27. doi: 10.1208/s12249-012-9865-5, PMID 23070560.

Parhi R, Swain S. Transdermal evaporation drug delivery system: concept to commercial products. Adv Pharm Bull. 2018;8(4):535-50. doi: 10.15171/apb.2018.063, PMID 30607327.

Jena BR, Panda SP, Kulandaivelu U, Alavala RR, Rao GS, Swain S. AQbD driven development of an RP-HPLC method for the quantitation of abiraterone acetate for its pharmaceutical formulations in the presence of degradants. Turk J Pharm Sci. 2021;18(6):718-29. doi: 10.4274/tjps.galenos.2021.74150, PMID 34978401.

Published

07-07-2024

How to Cite

NERELLA, N., & VASUDHA, B. (2024). QUALITY BY DESIGN ENABLES FORMULATION DEVELOPMENT OF ZOLMITRIPTAN LOADED ETHOSOMAL INTRA-NASAL GEL FOR BRAIN TARGETING: IN VITRO AND EX VIVO EVALUATION. International Journal of Applied Pharmaceutics, 16(4), 142–153. https://doi.org/10.22159/ijap.2024v16i4.51066

Issue

Section

Original Article(s)

Most read articles by the same author(s)