FABRICATION, OPTIMIZATION AND IN VITRO CYTOTOXICITY EVALUATION OF DASATINIB MONOHYDRATE-LOADED NANOPARTICLES
DOI:
https://doi.org/10.22159/ijap.2024v16i5.51125Keywords:
Dasatinib monohydrate, Box-behnken design, and solid lipid nanoparticles, Ionic gelation, In vitro cytotoxicity, MTT assayAbstract
Objective: The present research aimed to formulate, optimize and evaluate dasatinib monohydrate-loaded nanoparticles using the ionic gelation method as a potential anticancer drug delivery system for enhancing its dissolution rate.
Methods: Box-Behnken design was implemented to study the effects of selected parameters chitosan concentration (X1), Sodium Tripolyphosphate (NaTPP) concentration (X2), and NaTPP volume (X3) on the drug release from developed nanoparticles. Moreover, optimized formulation was evaluated for various parameters, including X-ray diffraction, differential scanning calorimetry, fourier transform infra-red, in vitro drug release and drug kinetics. Then, in vitro cytotoxicity was executed via MTT assay method on leukemia cell lines (RPMI 8226).
Results: The results showed optimal conditions for maximum encapsulation efficiency and minimum particle size were a low chitosan concentration, a medium NaTPP concentration, and a high NaTPP volume. The optimized batch (NP-7) demonstrated promising results with an encapsulation efficiency of 83.12±0.17%, particle size of 96.8 nm, and an in vitro cumulative drug release of 91.37±0.49% after 24 h. The cytotoxicity of dasatinib monohydrate was higher when administered in polymeric nanoparticles (NP-7) as compared to its pure form.
Conclusion: From this research, it can be concluded that the drug release was enhanced when dasatinib monohydrate was loaded into chitosan nanoparticles.
Downloads
References
Moya Lopez C, Juan A, Donizeti M, Valcarcel J, Vazquez JA, Solano E. Multifunctional PLA/gelatin bionanocomposites for tailored drug delivery systems. Pharmaceutics. 2022 May 27;14(6):1138. doi: 10.3390/pharmaceutics14061138, PMID 35745711.
Javaid MH, Chen N, Yasin MU, Fan X, Neelam A, Rehman M. Green-synthesized lignin nanoparticles enhance Zea mays resilience to salt stress by improving antioxidant metabolism and mitigating ultrastructural damage. Chemosphere. 2024;359:142337. doi: 10.1016/j.chemosphere.2024.142337, PMID 38754490.
Rani A, Verma R, Mittal V, Bhatt S, Kumar M, Tiwari A. Formulation development and optimization of rosuvastatin loaded nanosuspension for enhancing dissolution rate. Curr Drug Ther. 2023;18(1):75-87. doi: 10.2174/1574885517666220822104652.
Mian AA, Rafiei A, Haberbosch I, Zeifman A, Titov I, Stroylov V. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia. 2015;29(5):1104-14. doi: 10.1038/leu.2014.326, PMID 25394714.
Obr A, Roselova P, Grebenova D, Kuzelova K. Real-time analysis of imatinib and dasatinib-induced effects on chronic myelogenous leukemia cell interaction with fibronectin. Plos One. 2014;9(9):e107367. doi: 10.1371/journal.pone.0107367, PMID 25198091.
Adeola HA, Bano A, Vats R, Vashishtha A, Verma D, Kaushik D. Bioactive compounds and their libraries: an insight into prospective phytotherapeutics approach for oral mucocutaneous cancers. Biomed Pharmacother. 2021;141:111809. doi: 10.1016/j.biopha.2021.111809, PMID 34144454.
Garcia Gutierrez V, Hernandez Boluda JC. Tyrosine kinase inhibitors available for chronic myeloid leukemia: efficacy and safety. Front Oncol. 2019;9:603. doi: 10.3389/fonc.2019.00603, PMID 31334123.
Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824-30. doi: 10.1126/science.2406902, PMID 2406902.
Heisterkamp N, Groffen J, Stephenson JR, Spurr NK, Goodfellow PN, Solomon E. Chromosomal localization of human cellular homologues of two viral oncogenes. Nature. 1982;299(5885):747-9. doi: 10.1038/299747a0, PMID 7121606.
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2-25. doi: 10.1016/j.addr.2013.11.009, PMID 24270007.
Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653-64. doi: 10.1038/nrclinonc.2010.139, PMID 20838415.
Korashy HM, Rahman AF, Kassem MG. Dasatinib. Profiles Drug Subst Excip Relat Methodol. 2014;39:205-37.
Haslam S. Dasatinib: the emerging evidence of its potential in the treatment of chronic myeloid leukemia. Core Evid. 2005;1(1):1-12. PMID 22496672.
Kantarjian H, Pasquini R, Hamerschlak N, Rousselot P, Holowiecki J, Jootar S. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood. 2007;109(12):5143-50. doi: 10.1182/blood-2006-11-056028, PMID 17317857.
Madur S, Matole V, Kalshetti M. UV–visible spectrophotometric method development and validation of dasatinib in bulk and solid dosage form. Int J Curr Pharm Sci. 2020;12(4):90-3. doi: 10.22159/ijcpr.2020v12i4.39089.
Idacahyati K, Wulandari WT, Indra FG. Synthesis of encapsulated chromolaena odorata leaf extract in chitosan nanoparticle by using ionic gelation method and its antioxidant activity. Int J App Pharm. 2021;13(4):112-5. doi: 10.22159/ijap.2021.v13s4.43828.
Nagaverma BV, Yadav HK, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles. Asian J Pharm Clin Res. 2012;1:16-23.
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-77. doi: 10.1016/j.talanta.2008.05.019, PMID 18761143.
Kaushik R, Verma R, Budhwar V, Kaushik D. Investigation of solid dispersion approach for the improvement of pharmaceutical characteristics of telmisartan using a central composite design. Int J App Pharm. 2023;15(5):245-54. doi: 10.22159/ijap.2023v15i5.47968.
Devi S, Kumar S, Verma V, Kaushik D, Verma R, Bhatia M. Enhancement of ketoprofen dissolution rate by the liquisolid technique: optimization and in vitro and in vivo investigations. Drug Deliv Transl Res. 2022;12(11):2693-707. doi: 10.1007/s13346-022-01120-x, PMID 35178670.
Decaestecker TN, Lambert WE, Van Peteghem CH, Deforce D, Van Bocxlaer JF. Optimization of solid-phase extraction for a liquid chromatographic-tandem mass spectrometric general unknown screening procedure by means of computational techniques. J Chromatogr A. 2004;1056(1-2):57-65. doi: 10.1016/j.chroma.2004.06.010, PMID 15595533.
Bharti Sharma J, Bhatt S, Tiwari A, Tiwari V, Kumar M, Verma R. Statistical optimization of tetrahydrocurcumin loaded solid lipid nanoparticles using box behnken design in the management of streptozotocin-induced diabetes mellitus. Saudi Pharm J. 2023 Sep;31(9):101727. doi: 10.1016/j.jsps.2023.101727, PMID 37638219.
Verma R, Mittal V, Kaushik D. Quality-based design approach for improving oral bioavailability of valsartan loaded smedds and study of impact of lipolysis on the drug diffusion. Drug Deliv Lett. 2018;8(2):130-9. doi: 10.2174/2210303108666180313141956.
Begum MY, Gudipati PR. Formulation and evaluation of dasatinib-loaded solid lipid nanoparticles. Int J Pharm Pharm Sci. 2018;10(12):14-20. doi: 10.22159/ijpps.2018v10i12.27567.
Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res. 2013;30(2):512-22. doi: 10.1007/s11095-012-0897-z, PMID 23135815.
Setiawan F, Rusdiana T, Gozali D, Nurdianti L, Idacahyati K, Wulandari WT. Formulation and characterization of zeaxanthin nanoemulsion radiance serum as an antioxidant. Int J App Pharm. 2022;14(4):116-20. doi: 10.22159/ijap.2022.v14s4.PP27.
Pillai VK. Meet our editorial board member. ACCTRA. 2018;5(1):1. doi: 10.2174/2213476X0501180528083213.
Sinha S, Thapa S, Singh S, Dutt R, Verma R, Pandey P. Development of biocompatible nanoparticles of tizanidine hydrochloride in orodispersible films: in vitro characterization, ex vivo permeation, and cytotoxic study on carcinoma cells. Curr Drug Deliv. 2022;19(10):1061-72. doi: 10.2174/1567201819666220321111338, PMID 35319369.
Trapani A, Esteban MA, Curci F, Manno DE, Serra A, Fracchiolla G. Solid lipid nanoparticles administering antioxidant grape seed-derived polyphenol compounds: a potential application in aquaculture. Molecules. 2022;27(2):344. doi: 10.3390/molecules27020344, PMID 35056658.
Singh K, Singh A, Mishra A. Synthesis, characterization and in vitro release profile of gentamicin loaded chitosan nanoparticle. Int J Pharm Technol. 2016;9(10):29189-98.
Adena SK, Matte KV, Kosuru R. Formulation, optimization and in vitro characterization of dasatinib loaded polymeric nanocarriers to extend the release of the model drug. Int J Appl Pharm. 2021;13(5):318-30.
Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48(3):589-601. PMID 3335022.
Noor F, Niklas J, Müller Vieira U, Heinzle E. An integrated approach to improved toxicity prediction for the safety assessment during preclinical drug development using Hep G2 cells. Toxicol Appl Pharmacol. 2009;237(2):221-31. doi: 10.1016/j.taap.2009.03.011, PMID 19332084.
Niza E, Nieto Jimenez C, Noblejas Lopez MD, Bravo I, Castro Osma JA, Cruz Martinez F. Poly(cyclohexene phthalate) nanoparticles for controlled dasatinib delivery in breast cancer therapy. Nanomaterials (Basel). 2019 Aug 27;9(9):1208. doi: 10.3390/nano9091208, PMID 31461998.
M, Neekhra S, Swarnkar S, Gupta P, Gupta D, Khunteta A. Dasatinib and hesperidin loaded nanoformulation and preclinical evaluation for anticancer activity. IJPQA. 2020;14(3):579-86. doi: 10.25258/ijpqa.14.3.20.
Yang L, Xu J, Xie Z, Song F, Wang X, Tang R. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J Pharm Sci. 2021 Nov;16(6):762-71. doi: 10.1016/j.ajps.2021.08.001, PMID 35027952.
Arzi RS, Kay A, Raychman Y, Sosnik A. Excipient-free pure drug nanoparticles fabricated by microfluidic hydrodynamic focusing. Pharmaceutics. 2021 Apr 10;13(4):529. doi: 10.3390/pharmaceutics13040529, PMID 33920184.
Reddy Adena SK, Matte KV, Kosuru R. Formulation, optimization, and in vitro characterization of dasatinib loaded polymeric nanocarriers to extend the release of the model drug. Int J App Pharm. 2021;13(5):318-30. doi: 10.22159/ijap.2021v13i5.41995.
Zhang Y, Zeng X, Wang H, Fan R, Hu Y, Hu X. Dasatinib self-assembled nanoparticles decorated with hyaluronic acid for targeted treatment of tumors to overcome multidrug resistance. Drug Deliv. 2021 Dec;28(1):670-9. doi: 10.1080/10717544.2021.1905751, PMID 33792436.
Verma R, Kaushik D. Development, optimization, characterization and impact of in vitro lipolysis on drug release of telmisartan loaded SMEDDS. Drug Deliv Lett. 2019;9(4):330-40. doi: 10.2174/2210303109666190614120556.
Zeng X, Wang H, Zhang Y, Xu X, Yuan X, Li J. pH-responsive hyaluronic acid nanoparticles for enhanced triple-negative breast cancer therapy. Int J Nanomedicine. 2022 Mar 25;17:1437-57. doi: 10.2147/IJN.S360500, PMID 35369031.
Published
How to Cite
Issue
Section
Copyright (c) 2024 AJAY SAROHA, RAVINDER VERMA, VINEET MITTAL, DEEPAK KAUSHIK
This work is licensed under a Creative Commons Attribution 4.0 International License.