SYSTEMATIC DEVELOPMENT, OPTIMIZATION AND EVALUATION OF ASCORBIC ACID-COATED SUPER-PARAMAGNETIC IRON OXIDE NANOPARTICLES (SPIONS)

Authors

  • SAMEEA AHMED KHAN Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road (Ring Road), Indore-452001, Madhya Pradesh, India https://orcid.org/0000-0002-2132-8844
  • RAJESH SHARMA Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road (Ring Road), Indore-452001, Madhya Pradesh, India

DOI:

https://doi.org/10.22159/ijap.2024v16i4.51168

Keywords:

Magnetic nanoparticles, SPIONs, Box-behnken design, Metal nanoparticles

Abstract

Objective: In this study, Ascorbic acid-coated Super-Paramagnetic Iron Oxide Nanoparticles (AA-SPIONs) were synthesized, optimized, and further evaluated.

Methods: The nanoparticles were synthesized using the co-precipitation method, optimized by Box-Behnken Design (Design Expert® software). The formulation was then characterized for several in vitro attributes such as particle size distribution, zeta potential, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), and Vibration Sample Magnetometry (VSM).

Results: An optimized formulation was designed and synthesized. It showed an average size of ~260 nm with 24 mV zeta potential. The small size and electrostatic stability suggested an even distribution of particles in the bloodstream. FTIR revealed the interaction of AA with iron oxide. XRD studies and DSC thermograms ascertained the crystallinity of the iron formulation complying that the particles behaved as a single-domain magnetic crystal. The glass transition temperature of the coated nanoparticles was found to be 135.463ºC. Vibration sample magnetometry displayed the saturation magnetization value to be 2.87 emu g‾1, which indicated the retained super-paramagnetic nature of the nanoparticles.

Conclusion: The results were in concordance with the aim of this research work.

Downloads

Download data is not yet available.

References

De Franceschi L, Iolascon A, Taher A, Cappellini MD. Clinical management of iron deficiency anemia in adults: systemic review on advances in diagnosis and treatment. Eur J Intern Med. 2017;42:16-23. doi: 10.1016/j.ejim.2017.04.018, PMID 28528999.

Tettamanti M, lucca U, Gandini F, Recchia A, Mosconi P, Apolone G. Prevalence, incidence and types of mild anemia in the elderly: the ”Health and anemia” population-based study. Haematologica. 2010;95(11):1849-56. doi: 10.3324/haematol.2010.023101, PMID 20534701.

Ganz T. Hepcidin–a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005;18(2):171-82. doi: 10.1016/j.beha.2004.08.020, PMID 15737883.

Killip S, Bennett JM, Chambers MD. Iron deficiency anemia. Am Fam Physician. 2007;75(5):671-8. PMID 17375513.

Peyrin Biroulet L, Williet N, Cacoub P. Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review. Am J Clin Nutr. 2015;102(6):1585-94. doi: 10.3945/AJCN.114.103366, PMID 26561626.

Gour N, Chawla S. Prevalence of anemia among patients with cancer: a complex phenomenon. Cancer Res Stat Treat. 2021;4(1):166. doi: 10.4103/crst.crst_18_21.

Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, lozano R. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615-24. doi: 10.1182/BLOOD-2013-06-508325, PMID 24297872.

Bharati S, Pal M, Sen S, Bharati P. Malnutrition and anaemia among adult women in India. J Biosoc Sci. 2019;51(5):658-68. doi: 10.1017/S002193201800041X, PMID 30929649.

Bharati S, Pal M, Bharati P. Prevalence of anaemia among 6- to 59 mo old children in India: the latest picture through the NFHS-4. J Biosoc Sci. 2020;52(1):97-107. doi: 10.1017/S0021932019000294, PMID 31104639.

Arruebo M, Fernandez Pacheco R, Ibarra MR, Santamaria J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22-32. doi: 10.1016/S1748-0132(07)70084-1.

El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine (Lond). 2018;13(8):929-52. doi: 10.2217/NNM-2017-0320, PMID 29546817.

Inozemtseva OA, German SV, Navolokin NA, Bucharskaya AB, Maslyakova GN, Gorin DA. Encapsulated magnetite nanoparticles: preparation and application as a multifunctional tool for drug delivery systems. Nanotechnol Biosens. 2018. p. 175-92. doi: 10.1016/B978-0-12-813855-7.00006-4.

Wu W, Jiang CZ, Roy VA. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale. 2016;8(47):19421-74. doi: 10.1039/C6NR07542H, PMID 27812592.

Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11(9):1449-70. doi: 10.1517/17425247.2014.924501, PMID 24870351.

Arpna I, Ahmed Masheer KA. Box-behnken design for optimization of formulation variables for controlled release gastroretentive tablet of verapamil hydrochloride. Int J App Pharm. 2023;15(1):256-63. doi: 10.22159/ijap.2023v15i1.46489.

Patel M, Khan MA. Optimization, development and evaluation of repaglinide controlled release gastro-retentive floating tablet using central composite design. Int J App Pharm. 2023;15(1):218-26. doi: 10.22159/ijap.2023v15i1.46493.

Janko C, Zaloga J, Pottler M, Durr S, Eberbeck D, Tietze R. Strategies to optimize the biocompatibility of iron oxide nanoparticles- “SPIONs safe by design”. J Magn Magn Mater. 2017;431:281-4. doi: 10.1016/j.jmmm.2016.09.034.

Beg S, Rahman M, Kohli K. Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products. Drug Discov Today. 2019;24(3):717-25. doi: 10.1016/j.drudis.2018.12.002, PMID 30557651.

Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 2012;1826(2):443-57. doi: 10.1016/j.bbcan.2012.06.003, PMID 22728050.

Mccurdy PR. Parenteral iron therapy-a new iron-sorbitol citric acid complex for intramuscular injection. Ann Intern Med. 1964;61:1053-64. doi: 10.7326/0003-4819-61-6-1053, PMID 14233826.

Mansouri M, Nazarpak MH, Solouk A, Akbari S, Hasani Sadrabadi MM. Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. J Magn Magn Mater. 2017;421:316-25. doi: 10.1016/j.jmmm.2016.07.066.

Mallick N, Anwar M, Asfer M, Mehdi SH, Rizvi MM, Panda AK. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride. Carbohydr Polym. 2016;151:546-56. doi: 10.1016/j.carbpol.2016.05.102, PMID 27474599.

Mohapatra S, Asfer M, Anwar M, Ahmed S, Ahmad FJ, Siddiqui AA. Carboxymethyl Assam Bora rice starch coated SPIONs: synthesis, characterization and in vitro localization in a microcapillary for simulating a targeted drug delivery system. Int J Biol Macromol. 2018;115:920-32. doi: 10.1016/j.ijbiomac.2018.04.152, PMID 29723619.

Anwar M, Asfer M, Prajapati AP, Mohapatra S, Akhter S, Ali A. Synthesis and in vitro localization study of curcumin-loaded SPIONs in a microcapillary for simulating a targeted drug delivery system. Int J Pharm. 2014;468(1-2):158-64. doi: 10.1016/j.ijpharm.2014.04.038, PMID 24746694.

Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021. doi: 10.1016/j.biomaterials.2004.10.012, PMID 15626447.

Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064-110. doi: 10.1021/CR068445E, PMID 18543879.

Erkisa M, Ari F, Ulku I, Khodadust R, Yar Y, Yagci Acar H. Etoposide loaded SPION-PNIPAM nanoparticles improve the in vitro therapeutic outcome on metastatic prostate cancer cells via enhanced apoptosis. Chem Biodivers. 2020;17(11):e2000607. doi: 10.1002/cbdv.202000607, PMID 32918383.

Mandel K, Hutter F, Gellermann C, Sextl G. Synthesis and stabilisation of superparamagnetic iron oxide nanoparticle dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011;390(1-3):173-8. doi: 10.1016/j.colsurfa.2011.09.024.

Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124(28):8204-5. doi: 10.1021/JA026501X, PMID 12105897.

Lassenberger A, Scheberl A, Stadlbauer A, Stiglbauer A, Helbich T, Reimhult E. Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities. ACS Appl Mater Interfaces. 2017;9(4):3343-53. doi: 10.1021/acsami.6b12932, PMID 28071883.

Steitz B, Hofmann H, Kamau SW, Hassa PO, Hottiger MO, von Rechenberg B. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: size distribution, colloidal properties and DNA interaction. J Magn Magn Mater. 2007;311(1):300-5. doi: 10.1016/j.jmmm.2006.10.1194.

Shen CR, Juang JH, Tsai ZT, Wu ST, Tsai FY, Wang JJ. Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride. Carbohydr Polym. 2011;84(2):781-7. doi: 10.1016/j.carbpol.2010.07.067.

Baykal A, Amir M, Gunerb S, Sozeri H. Preparation and characterization of SPION functionalized via caffeic acid. J Magn Magn Mater. 2015;395:199-204. doi: 10.1016/j.jmmm.2015.07.095.

Graczyk H, Bryan LC, lewinski N, Suarez G, Coullerez G, Bowen P. Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs). J Aerosol Med Pulm Drug Deliv. 2015;28(1):43-51. doi: 10.1089/jamp.2013.1117, PMID 24801912.

Yu L, Yang X, Wang L, Yang H. Preparation and magnetic properties of doped Ni-Fe/Fe3O4 nanocomposite. Materials and Manufacturing Processes. 2011;26(11):1383-7. doi: 10.1080/10426914.2011.577877.

Peng N, Wu B, Wang L, He W, Ai Z, Zhang X. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater Sci. 2016;4(12):1802-13. doi: 10.1039/C6BM00504G, PMID 27792228.

Veres P, Sebok D, Dekany I, Gurikov P, Smirnova I, Fábian I. A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery. Carbohydr Polym. 2018;188:159-67. doi: 10.1016/j.carbpol.2018.01.098, PMID 29525152.

Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013;10(8):3076-89. doi: 10.1021/MP400154A, PMID 23758289.

Goorani S, Shariatifar N, Seydi N, Zangeneh A, Moradi R, Tari B. The aqueous extract of Allium saralicum R. M. fritsch effectively treat induced anemia: an experimental study on wistar rats. Orient Pharm Exp Med. 2019;19(4):403-13. doi: 10.1007/S13596-019-00361-5.

Published

07-07-2024

How to Cite

KHAN, S. A., & SHARMA, R. (2024). SYSTEMATIC DEVELOPMENT, OPTIMIZATION AND EVALUATION OF ASCORBIC ACID-COATED SUPER-PARAMAGNETIC IRON OXIDE NANOPARTICLES (SPIONS). International Journal of Applied Pharmaceutics, 16(4), 163–172. https://doi.org/10.22159/ijap.2024v16i4.51168

Issue

Section

Original Article(s)