BRINZOLAMIDE-LOADED ETHO-LECIPLEX FOR EFFECTIVE OCULAR MANAGEMENT OF GLAUCOMA: D-OPTIMAL DESIGN OPTIMIZATION AND IN VIVO EVALUATION

Authors

  • SARA NAGEEB EL-HELALY Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street-11562 Cairo, Egypt https://orcid.org/0000-0001-6382-0995
  • HAYDER A. HAMMOODI Department of Pharmacy, Mazaya University College, Thi-Qar, Iraq
  • MINA I. TADROS Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street-11562 Cairo, Egypt.Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt https://orcid.org/0000-0001-7092-8603
  • NERMEEN A. ELKASABGY Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street-11562 Cairo, Egypt.

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51259

Keywords:

Brinzolamide, Etho-leciplex, Glaucoma, D-optimal design, In vivo study

Abstract

Objective: Brinzolamide (BRZ) is an active carbonic anhydrase inhibitor adopted for glaucoma management. The limited aqueous solubility of the drug restricts its potential for ocular administration. Therefore, the aim of this investigation was to design a nanocarrier system called Etho-Leciplex (Etho-LPs) for the delivery of BRZ.

Methods: Etho-LPs were fabricated by a simple one-step technique and then optimized by D-optimal design employing Phospholipon®90G (PC): surfactant ratio and surfactant type (Cetyl Trimethyl Ammonium Bomide (CTAB) and Searylamine; SA) as independent variables, whereas the dependent variables were Entrapment Efficiency (EE%), Particle Size (PS), Polydispersity Index (PDI), and Zeta Potential (ZP). Design Expert® statistically suggested the optimum Etho-LP, which consisted of PC: Surface Active Agent (SAA) molar ratio (X1) of 1:1.27 and mixture of CTAB and SA (X2) in 1:1 molar ratio.

Results: The optimum Etho-LPs particles had spherical morphology, and EE% of 91.12±0.2 %, PS of 76.21±1.21 nm, PDI of 0.421±0.001 and ZP of 35.88 ±0.10 mV. The in vitro release study results demonstrated that BRZ is rapidly liberated from the optimum Etho-LPs compared to BRZ-suspension. Further, the optimum Etho-LP showed good mucoadhesive properties besides potential safety on rabbits’ eyes tissues. The optimum Etho-LP was found to enhance the ocular bioavailability of the drug in rabbits’ eyes relative to the BRZ suspension. In addition, histopathological assessment indicated the safety of BRZ-loaded Etho-LPs.

Conclusion: Overall, the obtained outcomes indicated the effectiveness of employing Etho-LPs for the treatment of glaucoma.

Downloads

Download data is not yet available.

References

Shukr MH, Ismail S, El-hossary GG, El-shazly AH. Design and evaluation of mucoadhesive in situ liposomal gel for sustained ocular delivery of travoprost using two steps factorial design. J Drug Deliv Sci Technol. 2021;1(61):102333. doi: 10.1016/j.jddst.2021.102333.

Maier PC, Funk J, Schwarzer G, Antes G, Falck Ytter YT. Treatment of ocular hypertension and open-angle glaucoma: a meta-analysis of randomised controlled trials. BMJ. 2005;331(7509):134. doi: 10.1136/bmj.38506.594977.E0, PMID 15994659.

Bengtsson B, Leske MC, Hyman L, Heijl A, Early Manifest Glaucoma Trial Group. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(2):205-9. doi: 10.1016/j.ophtha.2006.07.060, PMID 17097736.

Conlon R, Saheb H, Ahmed II. Glaucoma treatment trends: a review. Can J Ophthalmol. 2017;52(1):114-24. doi: 10.1016/j.jcjo.2016.07.013, PMID 28237137.

Linden C, Alm A. Prostaglandin analogues in the treatment of glaucoma. Drugs Aging. 1999;14(5):387-98. doi: 10.2165/00002512-199914050-00006, PMID 10408738.

Tejwani S, Machiraju P, Nair AP, Ghosh A, Das RK, Ghosh A. Treatment of glaucoma by prostaglandin agonists and beta-blockers in combination directly reduces pro-fibrotic gene expression in trabecular meshwork. J Cell Mol Med. 2020;24(9):5195-204. doi: 10.1111/jcmm.15172, PMID 32267082.

Supuran CT, Altamimi AS, Carta F. Carbonic anhydrase inhibition and the management of glaucoma: a literature and patent review 2013-2019. Expert Opin Ther Pat. 2019;29(10):781-92. doi: 10.1080/13543776.2019.1679117, PMID 31596641.

Nocentini A, Supuran CT. Adrenergic agonists and antagonists as antiglaucoma agents: a literature and patent review (2013-2019). Expert Opin Ther Pat. 2019;29(10):805-15. doi: 10.1080/13543776.2019.1665023, PMID 31486689.

Jain N, Verma A, Jain N. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: intraocular pressure measurement in white albino rabbits. Drug Deliv. 2020;27(1):888-99. doi: 10.1080/10717544.2020.1775726, PMID 32551978.

Yadav KS, Rajpurohit R, Sharma S. Glaucoma: current treatment and impact of advanced drug delivery systems. Life Sci. 2019;221:362-76. doi: 10.1016/j.lfs.2019.02.029, PMID 30797820.

Winum JY, Casini A, Mincione F, Starnotti M, Montero JL, Scozzafava A. Carbonic anhydrase inhibitors: N-(p-sulfamoylphenyl)-alpha-D-glycopyranosylamines as topically acting antiglaucoma agents in hypertensive rabbits. Bioorg Med Chem Lett. 2004;14(1):225-9. doi: 10.1016/j.bmcl.2003.09.063, PMID 14684332.

Sulatha VB, Krishna R, Akshay HT. Brinzolamide-induced eye discharge: a rare entity. Asian J Pharm Clin Res. 2016;9(2):1-2.

Gohil R. Optimization of brinzolamide loaded microemulsion using formulation by design approach: characterization and in vitro evaluation. Curr Drug Ther. 2020;15(1):37-52. doi: 10.2174/22123903OTU1zOTc6TcVY.

Zhou Y, Fang A, Wang F, Li H, Jin Q, Huang L. Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chinese Chemical Letters. 2020;31(2):494-500. doi: 10.1016/j.cclet.2019.04.048.

Younes NF, Abdel-halim SA, Elassasy AI. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization. Drug Deliv. 2018;25(1):1706-17. doi: 10.1080/10717544.2018.1497107, PMID 30442039.

Raj VK, Mazumder RU, Madhra MO. Ocular drug delivery system: challenges and approaches. Int J App Pharm. 2020;12:49-57. doi: 10.22159/ijap.2020v12i5.38762.

Younes NF, Abdel Halim SA, Elassasy AI. Corneal targeted sertaconazole nitrate loaded cubosomes: preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm. 2018;553(1-2):386-97. doi: 10.1016/j.ijpharm.2018.10.057, PMID 30393167.

Abdelbary GA, Amin MM, Zakaria MY. Ocular ketoconazole-loaded proniosomal gels: formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv. 2017;24(1):309-19. doi: 10.1080/10717544.2016.1247928, PMID 28165809.

Hassan DH, Abdelmonem R, Abdellatif MM. Formulation and characterization of carvedilol leciplex for glaucoma treatment: in vitro, ex-vivo and in vivo study. Pharmaceutics. 2018;10(4):197. doi: 10.3390/pharmaceutics10040197, PMID 30347876.

Ustundag Okur N, Homan Gokce E. Lipid nanoparticles for ocular drug delivery. Int J Ophthal Res. 2015;1(3):77-82. doi: 10.17554/j.issn.2409-5680.2015.01.29.

Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol. 2020;55. doi: 10.1016/j.jddst.2019.101389.

Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: an updated review. J Drug Deliv Sci Technol. 2022;76. doi: 10.1016/j.jddst.2022.103780.

Sanchez Lopez E, Espina M, Doktorovova S, Souto EB, Garcia ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye-Part II-ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2017;110:58-69. doi: 10.1016/j.ejpb.2016.10.013, PMID 27789359.

Albash R, M Abdellatif M, Hassan M, M Badawi N. Tailoring terpesomes and leciplex for the effective ocular conveyance of moxifloxacin hydrochloride (comparative assessment): in vitro, ex-vivo, and in vivo evaluation. Int J Nanomedicine. 2021;16:5247-63. doi: 10.2147/IJN.S316326, PMID 34376978.

Yuan H, Ma Q, Ye l, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. doi: 10.3390/molecules21050559, PMID 27136524

Neeraj J, V Anurag NJ. Preformulation studies of niosomal gel containing dipivefrin hydrochloride for antiglaucomatic activity. Int J Pharm Pharm Sci. 2024;16(2):1-7.

Pankaj KJ, Shikha K, Tapash C. Lipid-polymer hybrid nanocarriers as a novel drug delivery platform. Int J Pharm Pharm Sci. 2022;12(4):1-12.

Abdellatif MM, Josef M, El-Nabarawi MA, Teaima M. Sertaconazole-nitrate-loaded leciplex for treating keratomycosis: optimization using d-optimal design and in vitro, ex vivo, and in vivo studies. Pharmaceutics. 2022;14(10). doi: 10.3390/pharmaceutics14102215, PMID 36297650.

Date AA, Srivastava D, Nagarsenker MS, Mulherkar R, Panicker L, Aswal V. Lecithin-based novel cationic nanocarriers (LeciPlex) I: fabrication, characterization and evaluation. Nanomedicine. 2011;6(8):1309-25. doi: 10.2217/nnm.11.38, PMID 22026377.

Dhawan VV, Joshi GV, Jain AS, Nikam YP, Gude RP, Mulherkar R. Apoptosis induction and anti-cancer activity of leciplex formulations. Cell Oncol (Dordr). 2014;37(5):339-51. doi: 10.1007/s13402-014-0183-7, PMID 25204961.

Shah SM, Ashtikar M, Jain AS, Makhija DT, Nikam Y, Gude RP. LeciPlex, invasomes, and liposomes: a skin penetration study. Int J Pharm. 2015;490(1-2):391-403. doi: 10.1016/j.ijpharm.2015.05.042, PMID 26002568.

Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude RP, Hassan PA. Lecithin-based novel cationic nanocarriers (leciplex) ii: Improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 2011;8(3):716-26. doi: 10.1021/mp100305h, PMID 21480639.

Elmowafy M, Shalaby K, Alruwaili NK, Elkomy MH, Zafar A, Soliman GM. EthoLeciplex: a new tool for effective cutaneous delivery of minoxidil. Drug Dev Ind Pharm. 2022;48(9):457-69. doi: 10.1080/03639045.2022.2124261, PMID 36093810.

Abo Elela MM, Elkasabgy NA, Basalious EB. Bio-shielding in situ forming gels (BSIFG) loaded with lipospheres for depot injection of quetiapine fumarate: in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2999-3010. doi: 10.1208/s12249-017-0789-y, PMID 28493003.

El Taweel MM, Aboul-Einien MH, Kassem MA, Elkasabgy NA. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose to brain delivery. Pharmaceutics. 2021;13(11):1828. doi: 10.3390/pharmaceutics13111828, PMID 34834242.

Albash R, Badawi NM, Hamed MI, Ragaie MH, Mohammed SS, Elbesh RM. Exploring the synergistic effect of bergamot essential oil with spironolactone loaded nano-phytosomes for treatment of acne vulgaris: in vitro optimization, in silico studies, and clinical evaluation. Pharmaceuticals (Basel). 2023;16(1):128. doi: 10.3390/ph16010128, PMID 36678625.

Albash R, Ragaie MH, Hassab MA, El-Haggar R, Eldehna WM, Al-Rashood ST. Fenticonazole nitrate loaded trans-novasomes for effective management of tinea corporis: design characterization, in silico study, and exploratory clinical appraisal. Drug Deliv. 2022;29(1):1100-11. doi: 10.1080/10717544.2022.2057619, PMID 35373684.

Zeb A, Ullah K. Development in vitro and in vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Deliv Sci Technol. 2019;1(51):583-90. doi: 10.1016/j.jddst.2019.02.026.

Zaghloul N, El Hoffy NM, Mahmoud AA, Elkasabgy NA. Cyclodextrin stabilized freeze-dried silica/chitosan nanoparticles for improved terconazole ocular bioavailability. Pharmaceutics. 2022;14(3):470. doi: 10.3390/pharmaceutics14030470, PMID 35335847.

Abd-elsalam WH, Elkasabgy NA. Mucoadhesive olaminosomes: a novel prolonged release nanocarrier of agomelatine for the treatment of ocular hypertension. Int J Pharm. 2019;560:235-45. doi: 10.1016/j.ijpharm.2019.01.070, PMID 30763680.

El-Naggar MM, El-Nabarawi MA, Teaima MH, Hassan M, Hamed MI, Elrashedy AA. Integration of terpesomes loaded levocetrizine dihydrochloride gel as a repurposed cure for methicillin-resistant staphylococcus aureus (MRSA)-induced skin infection; d-optimal optimization, ex-vivo, in-silico, and in vivo studies. Int J Pharm. 2023;633:122621. doi: 10.1016/j.ijpharm.2023.122621, PMID 36693486.

Roggeband R, York M, Pericoi M, Braun W. Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products. Food Chem Toxicol. 2000;38(8):727-34. doi: 10.1016/s0278-6915(00)00057-0, PMID 10908820.

Jiang S, Chappa AK, Proksch JW. A rapid and sensitive LC/MS/MS assay for the quantitation of brimonidine in ocular fluids and tissues. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(3):107-14. doi: 10.1016/j.jchromb.2008.11.009, PMID 19109079.

Baneux PJ, Garner D, McIntyre HB, Holshuh HJ. Euthanasia of rabbits by intravenous administration of ketamine. J Am Vet Med Assoc. 1986;189(9):1038-9, PMID 3505922.

Fang G, Wang Q, Yang X. Physicochemical and engineering aspects vesicular phospholipid gels as topical ocular delivery system for treatment of anterior uveitis. Colloids Surf a Physicochem. 2021;20:627, 127187. doi: 10.1016/j.colsurfa.2021.127187.

Baig MS, Owida H, Njoroge W, Siddiqui AR, Yang Y. Development and evaluation of cationic nanostructured lipid carriers for ophthalmic drug delivery of besifloxacin. J Drug Deliv Sci Technol. 2020;55. doi: 10.1016/j.jddst.2019.101496.

Joseph J, BN VH, D RD. Experimental optimization of lornoxicam liposomes for sustained topical delivery. Eur J Pharm Sci. 2018;112:38-51. doi: 10.1016/j.ejps.2017.10.032, PMID 29111151.

Emad A, Salah S, Amer MS, Elkasabgy NA. 3D nanocomposite alginate hydrogel loaded with pitavastatin nanovesicles as a functional wound dressing with controlled drug release; preparation, in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2022;1(71):103292. doi: 10.1016/j. jddst.2022.103292.

Salama A, Badran M, Elmowafy M, Soliman GM. Spironolactone-loaded leciplexes as potential topical delivery systems for female acne: in vitro appraisal and ex vivo skin permeability studies. Pharmaceutics. 2019;12(1):25. doi: 10.3390/pharmaceutics12010025, PMID 31881783.

Carbone C, Tomasello B, Ruozi B, Renis M, Puglisi G. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur J Med Chem. 2012;49:110-7. doi: 10.1016/j.ejmech.2012.01.001, PMID 22244589.

Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139-51. doi: 10.1016/j.ejps.2012.05.010, PMID 22664358. ejps.2012.05.010.

Bachu RD, Chowdhury P, Al-saedi ZH, Karla PK, Boddu SH. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):1-31. doi: 10.3390/pharmaceutics10010028, PMID 29495528.

Onaizi SA. Characteristics and pH-responsiveness of SDBS-stabilized crude oil/water nanoemulsions. Nanomaterials (Basel). 2022;12(10). doi: 10.3390/nano12101673, PMID 35630894.

Varghese SE, Fariya MK, Rajawat GS, Steiniger F, Fahr A, Nagarsenker MS. LecithinLecithin and PLGA-based self-assembled nanocomposite, Lecithmer: preparation, characterization, and pharmacokinetic/pharmacodynamic evaluation. Drug Deliv Transl Res. 2016;6(4):342-53. doi: 10.1007/s13346-016-0314-y, PMID 27371394.

Mei Z, Liu S, Wang L, Jiang J, Xu J, Sun D. Preparation of positively charged oil/water nano-emulsions with a sub-PIT method. J Colloid Interface Sci. 2011;361(2):565-72. doi: 10.1016/j.jcis.2011.05.011.

Adel IM, Elmeligy MF, Abdelrahim ME, Maged A, Abdelkhalek AA, Abdelmoteleb AM. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int J Nanomedicine. 2021;16:2667-87. doi: 10.2147/IJN.S306831, PMID 33854314.

Apaolaza PS, Delgado D, del Pozo-Rodriguez A, Gascon AR, Solinis MA. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm. 2014;465(1-2):413-26. doi: 10.1016/j.ijpharm.2014.02.038, PMID 24576595.

Abdel Hafez SM, Hathout RM, Sammour OA. Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. Int J Biol Macromol. 2018;108:753-64. doi: 10.1016/j.ijbiomac.2017.10.170, PMID 29104049.

Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA. Topical cellulose nanocrystals-stabilized nanoemulgel loaded with ciprofloxacin HCl with enhanced antibacterial activity and tissue regenerative properties. J Drug Deliv Sci Technol. 2021;64:102553. doi: 10.1016/j.jddst.2021.102553.

Loftsson T, Jansook P, Stefansson E. Topical drug delivery to the eye: dorzolamide. Acta Ophthalmol. 2012;90(7):603-8. doi: 10.1111/j.1755-3768.2011.02299.x, PMID 22269010.

Mathis G. Clinical ophthalmic pharmacology and therapeutics: ocular drug delivery. Vet Ophthalmol. 1999:291-7.

Vo A, Feng X, Patel D, Mohammad A, Patel M, Zheng J. In vitro physicochemical characterization and dissolution of brinzolamide ophthalmic suspensions with similar composition. Int J Pharm. 2020;588:119761. doi: 10.1016/j.ijpharm.2020.119761, PMID 32795488.

Adel IM, Elmeligy MF, Amer MS, Elkasabgy NA. Polymeric nanocomposite hydrogel scaffold for jawbone regeneration: the role of rosuvastatin calcium-loaded silica nanoparticles. Int J Pharm X. 2023;6:100213. doi: 10.1016/j.ijpx.2023.100213, PMID 37927584.

Gipson IK. Goblet cells of the conjunctiva: a review of recent findings. Prog Retin Eye Res. 2016;54:49-63. doi: 10.1016/j.preteyeres.2016.04.005, PMID 27091323.

Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7(3):281-91. doi: 10.1016/j.apsb.2016.09.001, PMID 28540165.

Hospital CU, Province J, Province J, Efficient D. Nanoparticles in the ocular drug delivery. Int J Ophthalmol. 2013;6(3):390-6. doi: 10.3980/j.issn.2222-3959.2013.03.25.

Araujo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine. 2009;5(4):394-401. doi: 10.1016/j.nano.2009.02.003, PMID 19341814.

Fang G, Wang Q, Yang X, Qian Y, Zhang G, Zhu Q. Vesicular phospholipid gels as topical ocular delivery system for treatment of anterior uveitis. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;627. doi: 10.1016/j.colsurfa.2021.127187.

Fangueiro JF, Andreani T, Egea MA, Garcia ML, Souto SB, Silva AM. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int J Pharm. 2014;461(1-2):64-73. doi: 10.1016/j.ijpharm.2013.11.025, PMID 24275449.

Alhakamy NA, Hosny KM, Aldryhim AY, Rizg WY, Eshmawi BA, Bukhary HA. Development and optimization of ofloxacin as solid lipid nanoparticles for enhancement of its ocular activity. J Drug Deliv Sci Technol. 2022;72:103373. doi: 10.1016/j.jddst.2022.103373.

Published

07-09-2024

How to Cite

EL-HELALY, S. N., HAMMOODI, . H. A., TADROS, . M. I., & ELKASABGY, . N. A. (2024). BRINZOLAMIDE-LOADED ETHO-LECIPLEX FOR EFFECTIVE OCULAR MANAGEMENT OF GLAUCOMA: D-OPTIMAL DESIGN OPTIMIZATION AND IN VIVO EVALUATION. International Journal of Applied Pharmaceutics, 16(5), 395–404. https://doi.org/10.22159/ijap.2024v16i5.51259

Issue

Section

Original Article(s)