SOLID LIPID NANOPARTICLES OF FENUGREEK SEED EXTRACT IN A DERMATOLOGICAL BASE FOR ALOPECIA: AN IN VIVO STUDY

Authors

  • ANANTH PRABHU Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore-575018, India
  • MARINA KOLAND Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore-575018, India https://orcid.org/0000-0003-2628-3582
  • JYOTHI D. Department of Pharmacognosy, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore-575018, India https://orcid.org/0000-0002-8564-319X
  • SINDHOOR S. M. Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore-575018, India https://orcid.org/0000-0003-3937-9858

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51286

Keywords:

Fenugreek seed extract, Solid lipid nanoparticle, Alopecia, Cyclophosphamide, Wistar rats

Abstract

Objective: The objective of the study was to investigate the potential of Solid Lipid Nanoparticles (SLN) of Fenugreek Seed Extract (FSE) in a dermatological base for its hair growth activity in alopecia

Methods: The optimized SLN formulation of FSE was loaded into neutralized Carbopol 934 gel, and its hair growth efficacy was studied in Wistar rats in terms of hair density and length. Alopecia was induced in the rats by administering cyclophosphamide at a dose of 40 mg/kg for three days. The formulations were applied to the skin for twenty-one days following the induction of the disease. The hair growth in FSE-SLN gel-treated groups were compared with disease control and other treatment groups using qualitative and quantitative assessments.

Results: FSE-SLN gel reduced the hair growth completion time comparable to that of the standard (p<0.01). The increase in hair length was significantly (p<0.01) greater in FSE SLN groups compared to groups treated with conventional gels, oils, and marketed formulations, demonstrating the superior hair growth efficacy of the developed FSE SLN.

Conclusion: SLNs can enhance the penetration of extract into the skin (stratum corneum) compared to oil and gels, thereby increasing treatment efficiency, targeting the epidermis, and reducing systemic absorption and related side effects. Consequently, the developed nanoformulation can be a substitute for in vivo hair growth activity.

Downloads

Download data is not yet available.

References

Madani S, Shapiro J. Alopecia areata update. J Am Acad Dermatol. 2000 Apr 1;42(4):549-66. doi: 10.1067/mjd.2000.103909, PMID 10727299.

Amin SS, Sachdeva S. Alopecia areata: a review. J Saudi Soc Dermatol Dermatol Surg. 2013 Jul 1;17(2):37-45. doi: 10.1016/j.jssdds.2013.05.004.

Hunt N, McHale S. The psychological impact of alopecia. BMJ. 2005 Oct 20;331(7522):951-3. doi: 10.1136/bmj.331.7522.951, PMID 16239692.

Salim S, Kamalasanan K. Controlled drug delivery for alopecia: a review. J Control Release. 2020 Sep 10;325:84-99. doi: 10.1016/j.jconrel.2020.06.019, PMID 32619746.

Premanand A, Ancy VB, Jeevanandam J, Rajkumari BR, Danquah MK. Phytochemicals as emerging therapeutic agents for alopecia treatment. Phytochem Lead Compd New Drug Discov. 2020 Jan 1:221-38. doi: 10.1016/B978-0-12-817890-4.00014-7.

Patel S, Sharma V, Chauhan NS, Thakur M, Dixit VK. Hair growth: focus on herbal therapeutic agent. Curr Drug Discov Technol. 2015 Mar 1;12(1):21-42. doi: 10.2174/1570163812666150610115055, PMID 26058803.

Tiwari R, Tiwari G, Yadav A, Ramachandran V. Development and evaluation of herbal hair serum: a traditional way to improve hair quality. Open Dermatol J. 2021;15(1):52-8. doi: 10.2174/1874372202115010052.

Imtiaz F, Islam M, Saeed H, Saleem B, Asghar M, Saleem Z. Impact of Trigonella foenum-graecum leaves extract on mice hair growth. Pak J Zool. 2017 Aug 1;49(4):1405-12. doi: 10.17582/journal.pjz/2017.49.4.1405.1412.

Umar S, Carter MJ. A multimodal hair loss treatment strategy using a new topical phytoactive formulation: a report of five cases. Case Rep Dermatol Med. 2021 Feb 4;2021:1-12. doi: 10.1155/2021/6659943.

Gupta A, Malviya R, Singh TP, Sharma PK. Indian medicinal plants used in hair care cosmetics: a short review. Pharmacogn J. 2010 Jun 1;2(10):361-4. doi: 10.1016/S0975-3575(10)80110-5.

Wosicka Frackowiak H, Cal K, Stefanowska J, Glowka E, Nowacka M, Struck-Lewicka W. Roxithromycin loaded lipid nanoparticles for follicular targeting. Int J Pharm. 2015 Nov 30;495(2):807-15. doi: 10.1016/j.ijpharm.2015.09.068, PMID 26456292.

Padois K, Cantieni C, Bertholle V, Bardel C, Pirot F, Falson F. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm. 2011 Sep 15;416(1):300-4. doi: 10.1016/j.ijpharm.2011.06.014, PMID 21704140.

Ananth P, Koland M. Topical delivery of fenugreek seed extract loaded solid lipid nanoparticles based hydrogels for alopecia. J Pharm Res Int. 2021 Aug 6;33(40A):231-41. doi: 10.9734/jpri/2021/v33i40A32239.

Jimenez JJ, Roberts SM, Mejia J, Mauro LM, Munson JW, Elgart GW. Prevention of chemotherapy-induced alopecia in rodent models. Cell Stress Chaperones. 2008 Mar 5;13(1):31-8. doi: 10.1007/s12192-007-0005-1, PMID 18347939.

Hendrix S, Handjiski B, Peters EM, Paus R. A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol. 2005 Jul 1;125(1):42-51. doi: 10.1111/j.0022-202X.2005.23787.x, PMID 15982301.

Patel S, Sharma V, Chauhan NS, Dixit VK. A study on the extracts of Cuscuta reflexa Roxb. in treatment of cyclophosphamide-induced alopecia. DARU J Pharm Sci. 2014 Jan 6;22(1):1-7.

Trueb RM. Chemotherapy-induced alopecia. Curr Opin Support Palliat Care. 2010 Dec 1;4(4):281-4. doi: 10.1097/SPC.0b013e3283409280, PMID 21045702.

Wikramanayake TC, Amini S, Simon J, Mauro LM, Elgart G, Schachner LA. A novel rat model for chemotherapy induced alopecia. Clin Exp Dermatol. 2012;37(3):284-9. doi: 10.1111/j.1365-2230.2011.04239.x, PMID 22409523.

Adhirajan N, Ravi Kumar T, Shanmugasundaram N, Babu M. In vivo and in vitro evaluation of hair growth potential of Hibiscus rosa sinensis Linn. J Ethnopharmacol. 2003 Oct 1;88(2-3):235-9. doi: 10.1016/s0378-8741(03)00231-9, PMID 12963149.

Uno H. Quantitative models for the study of hair growth in vivo a. Ann N Y Acad Sci. 1991 Dec 26;642(1):107-24. doi: 10.1111/j.1749-6632.1991.tb24384.x.

Rahmi IA, Munim A, Jufri M. Formulation and evaluation of phytosome lotion from Nothopanaxscutellarium leaf extract for hair growth. Int J Appl Pharm. 2021;13(6):178-85. doi: 10.22159/ijap.2021v13i6.42169.

Burda H, Voldrick L. Correlation between the hair cell density and the auditory threshold in the white rat. Hear Res. 1980 Jul 1;3(1):91-3. doi: 10.1016/0378-5955(80)90010-6, PMID 7400050.

Orafidiya LO, Agbani EO, Adelusola KA, Iwalewa EO, Adebanji OA, Adediran EA. A study on the effect of the leaf essential oil of Linn. on cyclophosphamide-induced hair loss. Int J Aromather. 2004 Jan 1;14(3):119-28. doi: 10.1016/j.ijat.2004.06.006.

Zhang NN, Park DK, Park HJ. Hair growth promoting activity of hot water extract of Thuja orientalis. BMC Complement Altern Med. 2013 Jan 10;13:9. doi: 10.1186/1472-6882-13-9, PMID 23305186.

Lademann J, Otberg N, Jacobi U, Hoffman RM, Blume Peytavi U. Follicular penetration and targeting. J Investig Dermatol Symp Proc. 2005;10(3):301-3. doi: 10.1111/j.1087-0024.2005.10121.x, PMID 16382687.

Morgen M, LU GW, DU D, Stehle R, Lembke F, Cervantes J. Targeted delivery of a poorly water-soluble compound to hair follicles using polymeric nanoparticle suspensions. Int J Pharm. 2011 Sep 15;416(1):314-22. doi: 10.1016/j.ijpharm.2011.06.019, PMID 21722722.

Purwal L, Gupta SP, Pande SM. Development and evaluation of herbal formulations for hair growth. J Chem. 2008;5(1):34-8. doi: 10.1155/2008/674598.

Roy RK, Thakur M, Dixit VK. Development and evaluation of polyherbal formulation for hair growth-promoting activity. J Cosmet Dermatol. 2007;6(2):108-12. doi: 10.1111/j.1473-2165.2007.00305.x, PMID 17524127.

El Housiny S, Shams Eldeen MA, El Attar YA, Salem HA, Attia D, Bendas ER. Fluconazole loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018;25(1):78-90. doi: 10.1080/10717544.2017.1413444, PMID 29239242.

Wissing SA, Muller RH. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int J Pharm. 2002 Aug 21;242(1-2):377-9. doi: 10.1016/s0378-5173(02)00220-x, PMID 12176283.

Chourasia R, Jain SK. Drug targeting through pilosebaceous route. Curr Drug Targets. 2009 Oct 1;10(10):950-67. doi: 10.2174/138945009789577918, PMID 19663765.

Boisvert WA, YU M, Choi Y, Jeong GH, Zhang YL, Cho S. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice. BMC Complement Altern Med. 2017 Feb;17(1):109. doi: 10.1186/s12906-017-1624-4, PMID 28193226.

Abadi H, Winata HS, Parhan DV, Diana VE, Chan A, Haryani R. Hair tonic formulation of clove leaves (Syzygium aromaticum) ethanol extract and the effectiveness on rabbit hair growth. Int J App Pharm. 2020;12(6):245-8. doi: 10.22159/ijap.2020v12i6.39027.

Published

07-11-2024

How to Cite

PRABHU, A., KOLAND, M., D., J., & S. M., S. (2024). SOLID LIPID NANOPARTICLES OF FENUGREEK SEED EXTRACT IN A DERMATOLOGICAL BASE FOR ALOPECIA: AN IN VIVO STUDY. International Journal of Applied Pharmaceutics, 16(6), 257–263. https://doi.org/10.22159/ijap.2024v16i6.51286

Issue

Section

Original Article(s)