NAVIGATING NITROSAMINES: ORIGIN, DETECTING, ANALYSING AND REGULATING IMPURITIES IN PHARMACEUTICALS

Authors

  • TEJAS SANJAY SONAWANE Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104. Karnataka, India. https://orcid.org/0000-0002-6253-4935
  • TANVI PAINGINKAR Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104. Karnataka, India.
  • RUCHIR BAVADIA Dr. Reddy’s, Hyderabad-500090. Telangana State, India https://orcid.org/0000-0002-4041-0560
  • SG VASANTHARAJU Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104. Karnataka, India.
  • MUDDUKRISHNA BADAMANE SATHYANARAYANA Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104. Karnataka, India.
  • GUNDAWAR RAVI Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104. Karnataka, India

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51376

Keywords:

N-nitrosamines, Impurities, Analytical techniques, Recall, Detection, Quantification, Regulatory

Abstract

N-nitrosamines are carcinogenic impurities mostly found in groundwater, treated water, foods, beverages, and consumer products like processed meats, alcoholic beverages, cosmetics, and cigarette smoke. The recent discovery of N-nitrosamines in pharmaceutical products and subsequent recalls pose a significant health risk to patients. Nitrosamine impurities in drug products have appeared as a critical concern in pharmaceuticals prompting extensive scrutiny from regulatory agencies and stakeholders. To avoid carcinogenic and mutagenic effects in patients relying on these medications, authorities have established specific guidelines in risk assessment scenarios and proposed control acceptable limits for nitrosamine impurities in pharmaceuticals. This review provides an information on historical background of Nitrosamine impurities; its carcinogenic effect; the sources and formation of impurities; associated risks of nitrosamines in drug formulations; different analytical techniques for nitrosamine detection. It also gives an understanding of the general Quality Risk management (QRM) process, techniques for measuring nitrosamine impurities with control strategies as directed by the regulatory authorities and how to avoid them in pharmaceutical drug products. A brief review on recalls of drug classes including angiotensin II receptor antagonists, histamine-2 receptor antagonists, antimicrobial agents, and antidiabetic drugs by regulatory bodies due to its potential harm produced by nitrosamine have been discussed. Moreover, the regulatory landscape governing nitrosamine impurities are explored, encompassing recent guidelines from major regulatory bodies such as the United States Food and Drug Administration (USFDA), European Medicines Agency (EMA) and Health Canada (HC) in controlling/eliminating the nitrosamine impurities in pharmaceuticals.

Downloads

Download data is not yet available.

References

Beard JC, Swager TM. An organic chemist’s guide to N-nitrosamines: their structure, reactivity, and role as contaminants. J Org Chem. 2021;86(3):2037-57. doi: 10.1021/acs.joc.0c02774. PMID 33474939.

Tuesuwan B, Vongsutilers V. Nitrosamine contamination in pharmaceuticals: threat, impact, and control. J Pharm Sci. 2021;110(9):3118-28. doi: 10.1016/j.xphs.2021.04.021, PMID 33989680.

Akkaraju H, Tatia R, Mane SS, Khade AB, Dengale SJ. A comprehensive review of sources of nitrosamine contamination of pharmaceutical substances and products, Regulatory Toxicology and Pharmacology. Vol. 139. Academic Press Inc.; 2023. p. 105355. doi: 10.1016/j.yrtph.2023.105355.

Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem. 2012;2012:282574. doi: 10.1155/2012/282574, PMID 22611397.

Wang LH, Hsia HC, Wang CC. Simultaneous determination of five volatile and non‐volatile N‐nitrosamines in biological fluids and cosmetic products by liquid chromatography with photodiode array detection. J Liq Chromatogr Relat Technol. 2006;29(12):1737-51. doi: 10.1080/10826070600716876.

Lopez Rodriguez R, McManus JA, Murphy NS, Ott MA, Burns MJ. Pathways for N-nitroso compound formation: secondary amines and beyond. Org Process Res Dev. 2020;24(9):1558-85. doi: 10.1021/acs.oprd.0c00323.

World Health Organization. Medical product alert. Information notes nitrosamine impurities World Health Organization; 2019. Available from: https://www.who.int/news/item/20-11-2019-information-note-nitrosamine-impurities.

Charoo NA, Dharani S, Khan MA, Rahman Z. Nitroso impurities in drug products: an overview of risk assessment, regulatory milieu, and control strategy. AAPS PharmSciTech. 2023;24(2):60. doi: 10.1208/s12249-023-02523-w, PMID 36759424.

Center for Drug Evaluation and Research. Information about nitrosamine impurities in medications, U.S. Food and Drug Administration. Available from: https://www.FoodandDrugAdministration.gov/drugs/drug-safety-and-availability/information-about-nitrosamine-impurities-medications. [Last accessed on 05 Jun 2024]

Center for Drug Evaluation and Research. Information about nitrosamine impurities in medications, U.S. Food and Drug Administration; 2023. Available from: https://www.FoodandDrugAdministration.gov/drugs/drug-safety-and-availability/information-about-nitrosamine-impurities-medications.

Dass SB, Hammons GJ, Bucci TJ, Heflich RH, Casciano DA. Susceptibility of C57BL/6 mice to tumorigenicity induced by dimethylnitrosamine and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine in the neonatal bioassay. Cancer Lett. 1998;124(1):105-10. doi: 10.1016/s0304-3835(97)00462-x, PMID 9500198.

Weghorst CM, Pereira MA, Klaunig JE. Strain differences in hepatic tumor promotion by phenobarbital in diethylnitrosamine- and dimethylnitrosamine-initiated infant male mice. Carcinogenesis. 1989;10(8):1409-12. doi: 10.1093/carcin/10.8.1409, PMID 2752514.

Phillipson CE, Ioannides C. A comparative study of the bioactivation of nitrosamines to mutagens by various animal species including man. Carcinogenesis. 1984;5(8):1091-94. doi: 10.1093/carcin/5.8.1091, PMID 6744515.

Nedelcheva V, Gut I. P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica. 1994;24(12):1151-75. doi: 10.3109/00498259409038673, PMID 7771104.

Martignoni M, Groothuis GM, De Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875-94. doi: 10.1517/17425255.2.6.875, PMID 17125407.

Li X, He X, Le Y, Guo X, Bryant MS, Atrakchi AH. Genotoxicity evaluation of nitrosamine impurities using human TK6 cells transduced with cytochrome P450s. Arch Toxicol. 2022;96(11):3077-89. doi: 10.1007/s00204-022-03347-6, PMID 35882637.

Calvo JA, Moroski Erkul CA, Lake A, Eichinger LW, Shah D, Jhun I. AAG DNA glycosylase promotes Alkylation-Induced tissue damage mediated by PARP1. PLOS Genet. 2013;9(4):e1003413. doi: 10.1371/journal.pgen.1003413. PMID 23593019.

Hall J, Bresil H, Donato F, Wild CP, Loktionova NA, Kazanova OI. Alkylation and oxidative‐DNA damage repair activity in blood leukocytes of smokers and non‐smokers. Int J Cancer. 1993;54(5):728-33. doi: 10.1002/ijc.2910540504, PMID 8325702.

R Pounikar A, J Umekar M, R Gupta K. Genotoxic impurities: an important regulatory aspect. Asian J Pharm Clin Res 2020;13(6):10-25. doi: 10.22159/ajpcr.2020.v13i6.37370.

Wichitnithad W, Nantaphol S, Noppakhunsomboon K, Rojsitthisak P. An update on the current status and prospects of nitrosation pathways and possible root causes of nitrosamine formation in various pharmaceuticals. Saudi Pharm J. 2023;31(2):295-311. doi: 10.1016/j.jsps.2022.12.010, PMID 36942272.

Lopez Rodríguez R, McManus JA, Murphy NS, Ott MA, Burns MJ. Pathways for N -nitroso compound formation: secondary amines and beyond. Org Process Res Dev. 2020 Jul 28;24(9):1558-85. doi: 10.1021/acs.oprd.0c00323.

Challenges in implementing risk management measures. https://www.usrisk.com/about-us-risk/news-and-articles-all/11-19-19-challenges-in-implementing-risk-management-measures/. [Last accessed on 15 Mar 2024].

European Medicines Agency. Web link nitrosamine impurities. European Medicines Agency; 2020.

Kokotou MG, Mantzourani C, Bourboula A, Mountanea OG, Kokotos G. A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for the determination of free hydroxy fatty acids in cow and goat milk. Molecules. 2020;25(17):3947. doi: 10.3390/molecules25173947, PMID 32872426.

Li W, Chen N, Zhao Y, Guo W, Muhammd N, Zhu Y. Online coupling of tandem liquid-phase extraction with HPLC-UV for the determination of trace N-nitrosamines in food products. Anal Methods. 2018;10(15):1733-9. doi: 10.1039/C8AY00014J.

Schmidtsdorff S, Schmidt AH. Simultaneous detection of nitrosamines and other sartan-related impurities in active pharmaceutical ingredients by supercritical fluid chromatography. J Pharm Biomed Anal. 2019;174:151-60. doi: 10.1016/j.jpba.2019.04.049, PMID 31174128.

Liu J, Xie B, Mai B, Cai Q, He R, Guo D. Development of a sensitive and stable GC-MS/MS method for simultaneous determination of four N-nitrosamine genotoxic impurities in Sartan substances. J Anal Sci Technol. 2021;12(1):2-8. doi: 10.1186/s40543-020-00254-2.

Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791. doi: 10.3389/fmicb.2015.00791, PMID 26300860.

S Sutnga V, RR. A review on analytical challenges in monitoring and controlling genotoxic impurities. Asian J Pharm Clin Res 2020;13(10):10-5. doi: 10.22159/ajpcr.2020.v13i10.38847.

Papageorgiou M, Lambropoulou D, Morrison C, Klodzinska E, Namiesnik J, Płotka Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends in Analytical Chemistry. 2018;98:128-42. doi: 10.1016/j.trac.2017.11.001.

Iram M. From valsartan to ranitidine: the story of nitrosamines so far. IJOPP. 2019;13(1):1-2. doi: 10.5530/ijopp.13.1.1.

Center for Drug Evaluation and Research. Information about nitrosamine impurities in medications, U.S. Food and Drug Administration; n.d.a. Available from: https://www.FoodandDrugAdministration.gov/drugs/drug-safety-and-availability/information-about-nitrosamine-impurities-medications [Last accessed on 05 Jun 2024]

Bharate SS. Critical analysis of drug product recalls due to nitrosamine impurities. J Med Chem. 2021;64(6):2923-36. doi: 10.1021/acs.jmedchem.0c02120. PMID 33706513.

Srinivasan A. Proactive evaluation of possible genotoxic impurities during the early stages of drug development. Pharm Technol. 2019(5):s6-s10.

Subba Rao G. N-Nitrosamines from drug and nitrite: potential source of chemical carcinogens in humans? Pharm Int. 1980;1:187-90.

Shaikh T, Amit G, Hussain S. Nitrosamine impurities in drug substances and drug products. J Adv Pharm Pract. 2020;2(1):48-57. doi: 10.5281/zenodo.3629095.

Vikram HP, Kumar TP, Kumar G, Beeraka NM, Deka R, Suhail SM. Nitrosamines crisis in pharmaceuticals-insights on toxicological implications, root causes and risk assessment: a systematic review. J Pharm Anal. 2024;14(5):100919. doi: 10.1016/j.jpha.2023.12.009, PMID 38799236.

Paglialunga S, Van Haarst A. The impact of n-nitrosamine impurities on clinical drug development. J Pharm Sci. 2023;112(5):1183-91. doi: 10.1016/j.xphs.2023.01.017, PMID 36706834.

Cioc RC, Joyce C, Mayr M, Bream RN. Formation of n-nitrosamine drug substance related impurities in medicines: a regulatory perspective on risk factors and mitigation strategies. Org Process Res Dev. 2023;27(10):1736-50. doi: 10.1021/acs.oprd.3c00153.

Zheng J, Brookes A, Moser J, Pfeffer H, Smith A. On the risk of nitrosamine contamination during drug product blister packaging. J Pharm Sci. 2023;112(9):2321-5. doi: 10.1016/j.xphs.2023.07.014, PMID 37478970.

U.S. risk: opening the door to underwriting expertise and market access. U.S. Risk Opening Door Underwriting Expertise Mark Access. Available from: https://www.usrisk.com/about-us-risk/news-and-articles-all/11-19-19-challenges-in-implementing-risk-management-measures/.n.d.

Ferreira Lapo MI, Universidade de Lisboa, Faculdade de Farmacia. Risk assessment and mitigation of the presence of nitrosamine impurities in medicines; 2021.

Ganapati S, Isaacs L. Acyclic cucurbit[n]uril‐type receptors: preparation, molecular recognition properties and biological applications. Isr J Chem. 2018;58(3-4):250-63. doi: 10.1002/ijch.201700098, PMID 29805180.

Minami T, Esipenko NA, Zhang B, Kozelkova ME, Isaacs L, Nishiyabu R. Supramolecular sensor for cancer-associated nitrosamines. J Am Chem Soc. 2012;134(49):20021-4. doi: 10.1021/ja3102192, PMID 23194337.

Sam MS, Lintang HO, Sanagi MM, Lee SL, Yuliati L. Mesoporous carbon nitride for adsorption and fluorescence sensor of N-nitrosopyrrolidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;124:357-64. doi: 10.1016/j.saa.2013.12.113.

Brambilla G, Martelli A. Genotoxic and carcinogenic risk to humans of drug-nitrite interaction products. Mutat Res. 2007;635(1):17-52. doi: 10.1016/j.mrrev.2006.09.003, PMID 17157055.

Research C for DEA. Lupin Pharmaceuticals, Inc. issues voluntarily nationwide recall of all irbesartan tablets and irbesartan and hydrochlorothiazide tablets due to potential presence of N-nitroso irbesartan impurity. United States Food and Drug Administration. 2021. Available from: https://www.foodanddrugadministration.gov/safety/recalls-market-withdrawals-safety-alerts/lupin-pharmaceuticals-inc-issues-voluntarily-nationwide-recall-all-irbesartan-tablets-and-irbesartan.

Sindelar V, Cejas MA, Raymo FM, Chen W, Parker SE, Kaifer AE. Supramolecular assembly of 2,7‐dimethyldiazapyrenium and cucurbit[8]uril: a new fluorescent host for detection of catechol and dopamine. Chemistry. 2005;11(23):7054-9. doi: 10.1002/chem.200500917, PMID 16175642.

Questions and answers on ”Information on nitrosamines for marketing authorisation holders”. In: European Medicines Agency; 2020. p. 3-11. Available from: https://www.ema.europa.eu/en/documents/referral/nitrosamines-emea-h-a53-1490-questions-and-answers-information-nitrosamines-marketing-authorisation-holders-obsolete_en.pdf.

Murphy NS, O’Connor DC, Gavins GC, James L, Lockett JP, McManus JA. Identifying the risk of formation of nitrosamines and other potentially mutagenic impurities during API manufacture using in silico risk assessment. Org Process Res Dev. 2023;27(10):1812-9. doi: 10.1021/acs.oprd.3c00118.

Challenges in implementing risk management measures. Available from: https://www.usrisk.com/about-us-risk/news-and-articles-all/11-19-19-challenges-in-implementing-risk-management-measures/ [Last accessed on 15 Mar 2024].

Food and drug administration. U.S. Food and Drug Administration. Control of nitrosamine impurities in human drugs guidance for industry; 2021. Available from: https://www.foodanddrugadministration.gov/media/141720/download. [Last accessed on 10 Jan 2022]

Elder DP, Johnson GE, Snodin DJ. Tolerability of risk: a commentary on the nitrosamine contamination issue. J Pharm Sci. 2021;110(6):2311-28. doi: 10.1016/j.xphs.2021.02.028, PMID 33705731.

King FJ, Searle AD, Urquhart MW. Ranitidine ranitidine-investigations into the root cause for the presence of N-Nitroso- N, N-dimethylamine in ranitidine hydrochloride drug substances and associated drug products. Org Process Res Dev. 2020;24(12):2915-26. doi: 10.1021/acs.oprd.0c00462.

Schlingemann J, Boucley C, Hickert S, Bourasseau L, Walker M, Celdran C. Avoiding N-nitrosodimethylamine formation in metformin pharmaceuticals by limiting dimethylamine and nitrite. Int J Pharm. 2022;620:121740. doi: 10.1016/j.ijpharm.2022.121740, PMID 35421534.

Borths CJ, Burns M, Curran T, Ide ND. Nitrosamine reactivity: a survey of reactions and purge processes. Org Process Res Dev. 2021;25(8):1788-801. doi: 10.1021/acs.oprd.1c00162.

Hao G, Hu R, Wang X, Gao P, Wang L, Jiang M. N-nitrosodimethylamine formation in metformin hydrochloride sustained-release tablets: effects of metformin and hypromellose used in drug product formulation. J Pharm Biomed Anal. 2023;222:115066. doi: 10.1016/j.jpba.2022.115066.

Nanda KK, Tignor S, Clancy J, Marota MJ, Allain LR, D’Addio SM. Inhibition of N-nitrosamine formation in drug products: a model study. J Pharm Sci. 2021;110(12):3773-5. doi: 10.1016/j.xphs.2021.08.010, PMID 34400183.

Abe Y, Yamamoto E, Yoshida H, Usui A, Tomita N, Kanno H. Temperature-dependent formation of n-nitrosodimethylamine during the storage of ranitidine reagent powders and tablets. Chem Pharm Bull. 2020 Oct 1;68(10):1008-12. doi: 10.1248/cpb.c20-00431.

Published

07-09-2024

How to Cite

SONAWANE, T. S., PAINGINKAR, T., BAVADIA, R., VASANTHARAJU, . S., SATHYANARAYANA, M. B., & RAVI, G. (2024). NAVIGATING NITROSAMINES: ORIGIN, DETECTING, ANALYSING AND REGULATING IMPURITIES IN PHARMACEUTICALS. International Journal of Applied Pharmaceutics, 16(5), 1–11. https://doi.org/10.22159/ijap.2024v16i5.51376

Issue

Section

Review Article(s)

Most read articles by the same author(s)