DEVELOPMENT AND OPTIMIZATION OF THE WOUND HEALING ELECTROSPUN POLYURETHANE/COLLAGEN/PHYTOCERAMIDES NANOFIBERS USING THE BOX-BEHNKEN EXPERIMENTAL DESIGN) QUALITY BY DESIGN)
DOI:
https://doi.org/10.22159/ijap.2024v16i5.51510Keywords:
Nanofiber, Wound healing, Box behnken design, Optimization, Quality by designAbstract
Objective: This study aimed to develop and optimize polyurethane/collagen/phytoceramides nanofibers, a wound-healing drug delivery approach, using the electrospun technique. The objective was to enhance the effectiveness of nanofibers by optimizing the preparation process.
Methods: The box-behnken design was established to optimize the electrospinning instrument performance and, consequently, the nanofiber effectiveness. Response variables were diameter, zeta potential, and diffusion coefficient, while the experimental key factors were applied voltage, flow injection rate, and rotary collector speed of the electrospinning instrument. The optimized nanofibers were examined to ensure the validity of the optimization process.
Results: The study built prediction models for each response and employed a desirability function to suggest an optimum working level of each factor that guarantees minimum diameter, maximum zeta potential, and maximum diffusion coefficient. The desirability function suggested experimental conditions of 12.9 KV for the applied voltage, 1.3 ml/h for the injection flow rate, and a speed of 920 rpm for the rotary collector speed. The optimized formula proved satisfactory physicochemical properties regarding the nanofiber's infrared spectrum and wettability characteristics. The biomedical effectiveness of the optimized nanofibers showed increased anti-inflammatory potency up to 82.8±2.6% and a high wound closure rate of about 79%. Also, the stability study showed a nonsignificant change in response over the studied points.
Conclusion: The optimized nanofiber formula achieved the desired diameter, zeta potential, and diffusion coefficient. The results proved the Box-Behnken design approach's efficacy in enhancing the nanofiber formula's effectiveness and stability.
Downloads
References
Li R, Liu K, Huang X, Li D, Ding J, Liu B. Bioactive materials promote wound healing through modulation of cell behaviors. Adv Sci (Weinheim, Baden-Wurttemberg, Ger. 2022 Apr 1;9(10):e2105152. doi: 10.1002/advs.202105152
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic structure, physiology, and biochemistry of connective tissues and extracellular matrix collagens. Adv Exp Med Biol. 2021;1348:5-43. doi: 10.1007/978-3-030-80614-9_2
Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020 Aug 1;12(8):1-30. doi: 10.3390/pharmaceutics12080735, PMID 32764269.
Kummala R, Soto Veliz D, Fang Z, Xu W, Abitbol T, Xu C. Human dermal fibroblast viability and adhesion on cellulose nanomaterial coatings: influence of surface characteristics. Biomacromolecules. 2020;21(4):1560-7. doi: 10.1021/acs.biomac.0c00107, PMID 32150393.
Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers. 2014;101(8):821-33. doi: 10.1002/bip.22486, PMID 24633807.
Carlisle CR, Coulais C, Guthold M. The mechanical stress–strain properties of single electrospun collagen type I nanofibers. Acta Biomater. 2010 Aug 1;6(8):2997-3003. doi: 10.1016/j.actbio.2010.02.050, PMID 20197123.
Hernandez Rangel A, Martin Martinez ES. Collagen based electrospun materials for skin wounds treatment. J Biomed Mater Res A. 2021 Sep 1;109(9):1751-64. doi: 10.1002/jbm.a.37154, PMID 33638606.
Noorisafa F, Razmjou A, Emami N, Low ZX, Korayem AH, Kajani AA. Surface modification of polyurethane via creating a biocompatible superhydrophilic nanostructured layer: role of surface chemistry and structure. J Exp Nanosci. 2016 Sep 21;11(14):1087-109. doi: 10.1080/17458080.2016.1188223.
Mathew Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering (Basel, Switzerland). 2021 May 1;8(5). doi: 10.3390/bioengineering8050063, PMID 34064689.
Gajbhiye S, Wairkar S. Collagen fabricated delivery systems for wound healing: A new roadmap. Biomater Adv. 2022 Nov 1;142:213152. doi: 10.1016/j.bioadv.2022.213152, PMID 36270159.
Sharma S, Rai VK, Narang RK, Markandeywar TS. Collagen-based formulations for wound healing: a literature review. Life Sci. 2022 Feb 1;290:120096. doi: 10.1016/j.lfs.2021.120096, PMID 34715138.
Kallis PJ, Friedman AJ. Collagen powder in wound healing. J Drugs Dermatol. 2018 Apr 1;17(4):403-8. PMID 29601617.
Babu PA, Sekhar AC, Vishnu. From seizures to wounds: the potential of phenytoin in traumatic wound management. Int J Pharm Pharm Sci. 2023;15(6):55-8. doi: 10.22159/ijpps.2023v15i6.48079.
Reddy DV, Tejaswi C. Comparision of autologous platelet gel and conventional dressing in the healing of chronic wounds. Int J Curr Pharm Sci. 2023;15(5):83-7. doi: 10.22159/ijcpr.2023v15i5.3060.
Uchida Y, Park K. Ceramides in skin health and disease: an update. Am J Clin Dermatol. 2021 Nov 1;22(6):853-66. doi: 10.1007/s40257-021-00619-2, PMID 34283373.
Tessema EN, Gebre Mariam T, Schmelzer CE, Neubert RH. Isolation and structural characterization of glucosylceramides from ethiopian plants by LC/APCI-MS/MS. J Pharm Biomed Anal. 2017 Jul 15;141:241-9. doi: 10.1016/j.jpba.2017.04.036, PMID 28463779.
Berwick ML, Dudley BA, Maus K, Chalfant CE. The role of ceramide 1-phosphate in inflammation, cellular proliferation, and wound healing. Adv Exp Med Biol. 2019;1159:65-77. doi: 10.1007/978-3-030-21162-2_5
Surve C, Singh R, Banerjee A, Patnaik S, Shidhaye S. Formulation and qbd based optimization of methotrexate-loaded solid lipid nanoparticles for an effective anti-cancer treatment. Int J App Pharm. 2021;13(5):132-43. doi: 10.22159/ijap.2021v13i5.42373.
Panda R, Lankalapalli S. Design of experiments and optimization of amorphous solid dispersion of a BCS class IV anti-platelet drug through factorial design. Int J App Pharm. 2023;15(6):353-64. doi: 10.22159/ijap.2023v15i6.48767.
Rajora A, Chhabra G. Quality by design approach: regulatory need, current, and future perspective. Asian J Pharm Clin Res. 2021;14(6):29-35. doi: 10.22159/ajpcr.2021.v14i6.33733.
Zargham S, Bazgir S, Tavakoli A, Rashidi AS, Damerchely R. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. Journal of Engineered Fibers and Fabrics. 2012;7(4):42-9. doi: 10.1177/155892501200700414.
Jabur AR, Najim MA, Al- Rahman SA. Study the effect of flow rate on some physical properties of different polymeric solutions. J Phys.: Conf Ser. 2018;1003(1):1-7. doi: 10.1088/1742-6596/1003/1/012069.
Jalal NM, Jabur AR, Allami S. Effect of electro-spinning applied voltage on electro-spun EPS membranes thickness and fibers diameters. J Phys.: Conf Ser. 2021;1879(3). doi: 10.1088/1742-6596/1879/3/032085.
Liu Y, Dong L, Fan J, Wang R, Yu JY. Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning. J Appl Polym Sci. 2011 Apr 5;120(1):592-8. doi: 10.1002/app.33203.
Syed Bakar SS, Foong KM, Abdul Halif N, Yahud S. Effect of solution concentration and applied voltage on electrospun polyacrylonitrile fibers. IOP Conf Ser Mater Sci Eng. 2019;701(1):4-11. doi: 10.1088/1757-899X/701/1/012018
Wen Jun H, Ching Theng K. Design of a rotating drum for electrospinning setup with adjustable speed. Res Progr Mech Manuf Eng. 2020;1(1):64-8. doi: 10.30880/rpmme.2020.01.01.008.
Okutan N, Terzi P, Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 2014;39:19-26. doi: 10.1016/j.foodhyd.2013.12.022.
Gao C, Zhang L, Wang J, Jin M, Tang Q, Chen Z. Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B. 2021 Apr 15;9(14):3106-30. doi: 10.1039/d1tb00067e, PMID 33885618.
Vaquette C, Babak VG, Baros F, Boulanouar O, Dumas D, Fievet P. Zeta-potential and morphology of electrospun nano- and microfibers from biopolymers and their blends used as scaffolds in tissue engineering. Mendeleev Commun. 2008;18(1):38-41. doi: 10.1016/j.mencom.2008.01.015.
Naveentaj S, Muzib YI, Radha R. Design and optimization of fluconazole-loaded pharmacosome gel for enhancing transdermal permeation and treating fungal infections through box-behnken design. Int J App Pharm. 2023;15(1):131-40. doi: 10.22159/ijap.2023v15i1.46413.
Stuart BH. Infrared spectroscopy: fundamentals and applications. 1st ed. Wiley; 2004. p. 224.
Langwald SV, Ehrmann A, Sabantina L. Measuring physical properties of electrospun nanofiber mats for different biomedical applications. Membr. 2023;13(5):488. doi: 10.3390/membranes13050488, PMID 37233549.
Alnuqaydan AM, Zainy FM, Almutary AG, Sadier NS, Rah B. Tamarix articulata extract offers protection against toxicity induced by beauty products in Hs27 human skin fibroblasts. Plos One. 2023 Nov 1;18(11):e0287071. doi: 10.1371/journal.pone.0287071, PMID 37972033.
Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022 Feb 1;27(4). doi: 10.3390/molecules27041326, PMID 35209118.
Dharmadeva S, Galgamuwa LS, Prasadinie C, Kumarasinghe N. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu. 2018;39(4):239-42. doi: 10.4103/ayu.AYU_27_18, PMID 31367147.
Jabbar AA, Abdul-Aziz Ahmed K, Abdulla MA, Abdullah FO, Salehen NA, Mothana RA. Sinomenine accelerate wound healing in rats by augmentation of antioxidant, anti-inflammatory, immunuhistochemical pathways. Heliyon. 2024 Jan 1;10(1):e23581. doi: 10.1016/j.heliyon.2023.e23581, PMID 38173533.
Remington JP. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott, Williams and Wlikins; 2005.
Unnithan AR, Barakat NA, Pichiah PB, Gnanasekaran G, Nirmala R, Cha YS. Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCL. Carbohydr Polym. 2012 Nov 6;90(4):1786-93. doi: 10.1016/j.carbpol.2012.07.071, PMID 22944448.
Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ. FTIR analysis of natural and synthetic collagen. Appl Spectrosc Rev. 2018 Oct 21;53(9):703-46. doi: 10.1080/05704928.2018.1426595.
Garidel P. The thermotropic phase behaviour of phyto-ceramide 1 as investigated by ATR-FTIR and DSC. Phys Chem Chem Phys. 2002;4(12):2714-20. doi: 10.1039/b200618a.
Douglas T, Haugen HJ. Coating of polyurethane scaffolds with collagen: comparison of coating and cross-linking techniques. J Mater Sci Mater Med. 2008;19(7):2713-9. doi: 10.1007/s10856-008-3393-6, PMID 18283534.
Huang C, Dong L, Zhao B, Lu Y, Huang S, Yuan Z. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med. 2022 Nov;12(11):e1094. doi: 10.1002/ctm2.1094, PMID 36354147.
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. Med Comm. 2023 Aug 1;4(4):e291. doi: 10.1002/mco2.291, PMID 37337579.
Bauer SM, Goldstein LJ, Bauer RJ, Chen H, Putt M, Velazquez OC. The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia. J Vasc Surg. 2006 Jan;43(1):134-41. doi: 10.1016/j.jvs.2005.08.038, PMID 16414400.
Ravichandiran V, Manivannan S. Wound healing potential of transdermal patches containing bioactive fraction from the bark of Ficus racemosa. Int J Pharm Pharm Sci. 2015;7(6):326-32.
Kucuk S, Niven J, Caamano J, Jones SW, Camacho-Muñoz D, Nicolaou A. Unwrapping the mechanisms of ceramide and fatty acid-initiated signals leading to immune-inflammatory responses in obesity. Int J Biochem Cell Biol. 2021 Jun 1;135:105972. doi: 10.1016/j.biocel.2021.105972, PMID 33864951.
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325-47. doi: 10.1016/j.biotechadv.2010.01.004, PMID 20100560.
Li C, Ge J, Guo Q, Wang J, Wu J, Yan Z. Polyvinyl alcohol/collagen composite scaffold reinforced with biodegradable polyesters/gelatin nanofibers for adipose tissue engineering. Int J Biol Macromol. 2024;263(1):130237. doi: 10.1016/j.ijbiomac.2024.130237, PMID 38368980.
Yildirim Yalcin M, Tornuk F, Toker OS. Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends Food Sci Technol. 2022 Nov 1;129:179-93. doi: 10.1016/j.tifs.2022.09.022.
Yu C, Chen R, Chen J, Wang T, Wang Y, Zhang X. Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes. Mater Today Bio. 2024;26:101099. doi: 10.1016/j.mtbio.2024.101099, PMID 38840797.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Tassneim Ewedah, Mohamed El-Nabarawi, Mahmoud H. Teaima, Sammar Fathy Elhabal, Kamel R. Shoueir, Abdallah M. Hamdy , Ahmed Abdalla
This work is licensed under a Creative Commons Attribution 4.0 International License.