DEVELOPMENT OF 1H-INDAZOLE DERIVATIVES AS ANTI-INFLAMMATORY AGENTS USING COMPUTATIONAL METHODS

Authors

  • RAJESH B. NANAWARE School of Health Sciences and Technology, Department of Pharmaceutical Sciences, Dr. Vishwanath Karad MIT-World Peace University, Pune-411038, Maharashtra, India https://orcid.org/0000-0001-9198-5180
  • ANURUDDHA R. CHABUKSWAR School of Health Sciences and Technology, Department of Pharmaceutical Sciences, Dr. Vishwanath Karad MIT-World Peace University, Pune-411038, Maharashtra, India https://orcid.org/0000-0002-2868-6652
  • PRAJAKTA V. ADSULE School of Health Sciences and Technology, Department of Pharmaceutical Sciences, Dr. Vishwanath Karad MIT-World Peace University, Pune-411038. Maharashtra, India https://orcid.org/0000-0001-8009-2731
  • SWATI C. JAGDALE School of Health Sciences and Technology, Department of Pharmaceutical Sciences, Dr. Vishwanath Karad MIT-World Peace University, Pune-411038. Maharashtra, India https://orcid.org/0000-0003-2914-7420
  • KUNAL G. RAUT School of Health Sciences and Technology, Department of Pharmaceutical Sciences, Dr. Vishwanath Karad MIT-World Peace University, Pune-411038. Maharashtra, India https://orcid.org/0000-0002-3072-4953

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51634

Keywords:

1H-Indazole, Anti-iAnti-inflammatory agentsnflammatory agents, Cyclooxygenase-2, Molecular docking, MD Simulations, MMGBSA

Abstract

Objective: Due to the rising prevalence of disorders linked to inflammation, there is a greater emphasis on the discovery and development of anti-inflammatory drugs, with a focus on producing new structural compounds.

Methods: In this research, molecular docking and Molecular Dynamics (MD) simulation study were carried out to evaluate the 1H-indazole analogs as potent anti-inflammatory agents.

Results: The compounds containing difluorophenyl, para-toulene and 4-methoxyphenyl group shows significant binding results (9.11, 8.80 and 8.46 kcal/mol respectively) when docked with Cyclooxygenase-2 (COX-2) enzyme 3NT1. The results of the MD simulation indicated that test compound BDF was relatively stable in the COX-2 enzymes active sites. The compound BDF-3NT1 demonstrated substantial affinities for binding with all of its aimed targets following a dynamic Molecular Mechanics with Generalized Born Surface Area (MM-GBSA) analysis.

Conclusion: In accordance to this study, newly developed 1H-indazole compounds have the potential for treating inflammation.

Downloads

Download data is not yet available.

References

Gallo C.G., Fiorino S., Posabella G., Antonacci D., Tropeano A., Pausini E., Pausini C., Guarniero T., Hong W., Giampieri E., et al. The Function of Specialized Pro-Resolving Endogenous Lipid Mediators, Vitamins, and Other Micronutrients in the Control of the Inflammatory Processes: Possible Role in Patients with SARS-CoV-2 Related Infection. Prostaglandins Other Lipid Mediat. 2022; 159:106619. doi: 10.1016/j.prostaglandins.2022.106619.

Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9:7204–7218. doi: 10.18632/oncotarget.23208.

Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell. 2010; 140:771–776. doi: 10.1016/j.cell.2010.03.006.

Zhou Y., Hong Y., Huang H. Triptolide Attenuates Inflammatory Response in Membranous Glomerulo-Nephritis Rat via Downregulation of NF-κB Signaling Pathway. Kidney Blood Press Res. 2016; 41:901–910. doi: 10.1159/000452591.

Brown E.D., Wright G.D. Antibacterial drug discovery in the resistance era. Nature. 2016; 529:336–343. doi: 10.1038/nature17042.

Shaikh S, Badruddeen, Irfan Khan M, Ahmed A. In vitro and in vivo screening of anti-inflammatory activity of methanolic and aqueous extracts of anogeissus latifolia leaves. Int J Pharm Pharm Sci. 2022; 14(11):65-72.

Lestari D, Sari RP, Musfiroh I, Megantara S, Praceka MS, Khairul Ikram NK, Muchtaridi. Interactions of xanthone compounds from the mangosteen (garcinia mangostana L) pericarps against INOS, COX-1, and COX-2 enzyme receptors as anti-inflammatory. Int J App Pharm. 2023; 15(1):186-94.

Rostom A, Dube C, Wells G, et al. Prevention of NSAIDs induced gastroduodenal ulcers. Cochrane Database Syst Rev. 2002; 4:CD002296.

Basim A, Eldeen ZAM, Al-kaissi EN, Suaifan G, Ghattas MA, Arafat T, Al-adham IS. Design, synthesis and biological screening of aminoacetylenic tetrahydrophthalimide analogues as novel cyclooxygenase (COX) inhibitors. Int J Pharm Pharm Sci. 2017; 9(2):160-5.

Lee A, Cooper MG, Craig JC, et al. Effects of NSAIDs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev. 2007; 2:CD002765.

Royal Pharmaceutical Society of Great Britain. Infections. British National Formulary 57. London: RPS Publishing; 2009.

Peruncheralathan S, Khan TA, Ila H, Junjappa H. α-Oxoketene dithioacetals mediated heteroaromatic annulation protocol for benzoheterocycles: an efficient regio-controlled synthesis of highly substituted and annulated indazoles. Tetrahedron. 2004; 60:3457–3464.

Upadhyay A, Srivastava S, Yadav R. Conventional as well as microwave assisted synthesis and antimicrobial screening of 4-aryl-3-chloro-1-[(5-nitroindazol-1-yl)acetamido]-2-oxo-azetidines. Ind J Chem. 2011; 50:89–97.

Maggio B, Raimondi MV, Raffa D, Plescia F, Cascioferro S, Plescia S, Tolomeo M, Di Cristina A, Pipitone RM, Grimaudo S, Daidone G. Synthesis of substituted 3-amino-N-phenyl-1H-indazole-1-carboxamides endowed with antiproliferative activity. Eur J Med Chem. 2011; 46:168–174.

Salvatore P, Demetrio R, Fabiana P, Casula G, Maggio B, Daidone G, Raimondi MV, Cusimano MG, Bombieri G, Meneghetti F. Synthesis and biological evaluation of new indazole derivatives. ARKIVOC. 2010; (x):163–177.

Rodgers JD, Johnson BL, Wang H, Greenberg RA, Erickson-Viitanen S, Klabe RM, Cordova BC, Rayner MM, Lam GN, Chang C-H. Potent cyclic urea HIV protease inhibitors with benzofused heterocycles as P2/P2 groups. Bioorg Med Chem Lett. 1996; 6:2919–2924.

Lee F, Cherng J, Huang L, Huang T, Tsai S-C, Teng C-M, Wu C-C, Cheng F-C, Kuo S-C. Synthesis of 1-benzyl-3-(5-hydroxymethyl-2-furyl) indazole analogues as novel antiplatelet agents. J Med Chem. 2001; 44:3746–3749.

Giorgio G, Palazzo G, Germani C, Barcellona PS, Silvestrini B. 1-Halobenzyl-1H-indazole-3-carboxylic acids. A new class of antispermatogenic agents. J Med Chem. 1976; 19:778–783.

Kevin G, Albert J, Robichaud A, Alexander A, Greenfield A, Lo JR, Grosanu C, Mattes JF, Cai Y, Zhang GM, Zhang JY, Kowal DM, Smith DL, Di L, Kerns EH, Schechter LE, Comery TA. Identification of 3-sulfonylindazole derivatives as potent and selective 5-HT6 antagonists. Bioorg Med Chem. 2011; 19:650–662.

Rajesh B. Nanaware, Anuruddha R. Chabukswar, Prajakta V. Adsule. Design, synthesis and evaluation of antitubercular, analgesic and anti- inflammatory activity of novel 1H-indazole derivatives. Eur.Chem.Bull. 2023; 12(Sp8),5607-5629.

N O’Boyle. M Bank, C A James, C Morley, T Vandermeersch and G R Hutchison Open Bable: An open chemical toolbox. J. Cheminform.2011; 3:33.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25(13):1605-12.

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. Computational protein– ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016; 11(5): 905–919.

Ferreira, L., dosSantos, R., Oliva, G., & Andricopulo, A. Molecular Docking and Structure-Based Drug Design Strategies. Molecules. 2015; 20(7):13384–13421.

Duggan, K. C.,Walters, M.J., Musee, J., Harp, J.M., Kiefer, J.R., Oates, J.A., Marnett, L.J. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J. Biol. Chem. 2010; 285(45): 34950-34959.

Shaw DE, Maragakis P, Lindorff- Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W. Atomic-level characterization of the structural dynamics of proteins. Science. 2010; 330(6002):341-6.

Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK. Scalable algorithms for molecular dynamics simulations on commodity clusters. InSC'06: Proceedings of the 2006 ACM/IEEE Conference on super computing, 2006; 43-43.

Chow E, Rendleman CA, Bowers KJ, Dror RO, Hughes DH, Gullingsrud J, Sacerdoti FD, Shaw DE. Desmond performance on a cluster of multicore processors. DE Shaw Research Technical Report DESRES/TR-2008- 01.

Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Force Field. J. Chem. Theory Comput. 2010; 6(5): 1509–1519.

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R.W., & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79(2): 926–935.

Martyna, G.J., Tobias, D.J. & Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994; 101(5): 4177–4189.

Martyna, G. J., M. L. Klein, and M. Tuckerman. Nose-Hoover chains-the canonical ensemble via continuous dynamics. J. Chem. Phys. 1992; 97(4):2635–2643.

Abdulnour Y. Toukmaji, John A.Board, Ewald summation techniques in perspective: a survey, Comput. Phys. Commun.1996; 95(2–3):73-92.

Y.N. Imai, Y. Inoue, I. Nakanishi, K. Kitaura. Amide-π-intercations between formamide and benzene J. Comput. Chem. 2009; 30(14): 2267-2276.

Steven E. Wheeler and Jacob W.G. Bloom. Toward a more complete understanding of non-covalent interactions involving aromatic rings. J. Phys. Chem. A. 2014; 118(32):6133-6147.

Published

31-08-2024

How to Cite

NANAWARE, R. B., CHABUKSWAR, A. R., ADSULE, P. V., JAGDALE, S. C., & RAUT, K. G. (2024). DEVELOPMENT OF 1H-INDAZOLE DERIVATIVES AS ANTI-INFLAMMATORY AGENTS USING COMPUTATIONAL METHODS. International Journal of Applied Pharmaceutics, 16(6). https://doi.org/10.22159/ijap.2024v16i6.51634

Issue

Section

Original Article(s)