COMPUTATIONAL ANALYSIS, IN SILICO TOXICITY PREDICTION AND IN VITRO ANTIMICROBIAL EFFICACY OF ZINGIBER OFFICINALE ROSC. EXTRACT AGAINST PORPHYROMONAS GINGIVALIS

Authors

  • MINASARI Department of Oral Biology, and Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • FILIA DANA TYASINGSIH Department of Oral Biology, and Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • RINI OKTAVIA NASUTION Department of Oral Biology, and Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • FIDELIA NAVA SHAKIRA Department of Oral Biology, and Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51740

Keywords:

In silico, In vitro, Ginger extract, Porphyromonas gingivalis, Physicochemical parameters, MBC

Abstract

Objective: This study aimed to determine the molecular activity, toxicity prediction  and in vitro antimicrobial efficacy of Zingiber officinale Rosc Extract.

Methods: The molecular docking method was used to evaluate the antibacterial activity of the main compounds in Zingiber officinale by examining their interaction with DNA Gyrase IIb and Topoisomerase II. Chemical toxicity analysis was conducted using pK-CSM, SwissADME, and Pro-Tox II methodologies. Zingiber officinale rhizome was extracted via maceration, and its phytochemical content was determined. An in vitro antibacterial study against P. gingivalis was performed by measuring the inhibition zone using digital slide calipers and the disk diffusion method.

Results: The in silico toxicity test of the main components from Zingiber officinale revealed that gingerol, shogaols, and paradols have predicted LD50 values of 250 mg/kg, 687 mg/kg, and 2580 mg/kg, respectively, placing them in toxicity classes 3, 4, and 5. Their average similarity is 100% for gingerol and shogaols, and 87.52% for paradols, with prediction accuracies of 100% and 70.97%. Molecular docking indicated that gingerol, shogaols, and paradols inhibit DNA gyrase B and Topoisomerase II, which are involved in bacterial regeneration. The inhibition zones for concentrations of 60%, 40%, 20%, and 10% averaged 22.87mm, 18.5mm, 14.5mm, and 11.31mm, respectively, with Minimum Inhibitory Concentration (MIC) values of 10% and Minimum Bactericidal Concentration (MBC) values of 40%, showing the highest inhibition zone at 60%.

Conclusion: Zingiber officinale rhizome extract showed growth inhibition activity of Porphyromonas gingivalis ATCC®33277™

Downloads

Download data is not yet available.

References

Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, Prochazkova J, Duskova J. Porphyromonas gingivalis: major periodontopathic pathogen overview. J. Immunol. Res. 2014;2014(1):476068.doi: 10.1155/2014/476068

Rashmi KJ, Tiwari R. Pharmacotherapeutic properties of ginger and its use in diseases of the oral cavity: A narrative review. J. Adv. Oral Res. 2016 May;7(2):1-6.doi: 10.1177/2229411220160201

Supu RD, Diantini A, Levita J. Red ginger (Zingiber officinale var. rubrum): Its chemical constituents, pharmacological activities and safety. FitofarmakaJurnalIlmiahFarmasi. 2018 Jun 17;8(1):25-31.doi: 10.33751/jf.v8i1.1168

Subramani B, Baradwaj RG. Antibacterial, anti-oxidant and in vitro anticancer analysis of Zingiber officinale (L.) Rosc. J. Adv. Appl. Sci.Res. 2016 Dec 25;1(6):33-49.doi:10.46947/joaasr16201635

Aghazadeh M, Bialvaei AZ, Aghazadeh M, Kabiri F, Saliani N, Yousefi M, Eslami H, Kafil HS. Survey of the antibiofilm and antimicrobial effects of Zingiber officinale (in vitro study).Jundishapur J. Microbiol. 2016 Feb;9(2).doi: 10.5812/jjm.30167

Murugesan S, Venkateswaran MR, Jayabal S, Periyasamy S. Evaluation of the antioxidant and anti-arthritic potential of Zingiber officinale Rosc. . by in vitro and in silico analysis. S Afr J Bot. 2020 May 1;130:45-53.doi: 10.1016/j.sajb.2019.12.019

Kaushik S, Jangra G, Kundu V, Yadav JP, Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease. 2020 Sep;31:270-6.doi: 10.1007/s13337-020-00584-0

Al-khazraji SM, Hossain MH, Hassoon AS. Estimation of some Bioactive substances and Antibacterial activity of Zingiber officinale (Ginger) Extract. J Biomed Biochem. 2022 Aug 1;1(2):29-33.doi: 10.57238/jbb.2022.5544.1017

Yuandani, Jantan I, Haque MA, Rohani AS, Nugraha SE, Salim E, Septama AW, Juwita NA, Khairunnisa NA, Nasution HR, Utami DS. Immunomodulatory effects and mechanisms of the extracts and secondary compounds of Zingiber and Alpinia species: a review. Front. pharmacol. 2023 Jul 18;14:1222195.doi: 10.3389/fphar.2023.1222195

Marianne M, Mariadi M, Nugraha SE, Nasution R, Syuhada PN, Pandiangan S. Characteristics and hepatoprotective activity of the Curcuma heyneana rhizome extract toward wistar rats induced by ethanol. Jundishapur J. Nat. Pharm. Prod. 2021 Nov 30;16(4).doi: 10.5812/jjnpp.112653

Banu KS, Cathrine L. General techniques involved in phytochemical analysis. Intr. J. Adv. Res. Chem. Sci. 2015;2(4):25-32.doi: 10.20431/2349-0403.0204005

Roney M, Issahaku AR, Forid MS, Huq AM, Soliman ME, MohdAluwi MF, Tajuddin SN. In silico evaluation of usnic acid derivatives to discover potential antibacterial drugs against DNA gyrase B and DNA topoisomerase IV. Journal of Biomolecular Structure and Dynamics. 2023;41(24):14904-13.doi: 10.1080/07391102.2023.2224413

Dighe SN, Collet TA. Recent advances in DNA gyrase-targeted antimicrobial agents. European Journal of Medicinal Chemistry. 2020 Aug 1;199:112326.doi: 10.1016/j.ejmech.2020.112326

Martins da Silva AY, Arouche TD, Siqueira MR, Ramalho TC, de Faria LJ, Gester RD, Carvalho Junior RN, Santana de Oliveira M, Neto AM. SARS-CoV-2 external structures interacting with nanospheres using docking and molecular dynamics. Journal of Biomolecular Structure and Dynamics. 2023 Sep 1:1-6.doi: 10.1080/07391102.2023.2242135

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004 Oct;25(13):1605-12.doi: 10.1002/jcc.20084

Glüge J, McNeill K, Scheringer M. Getting the SMILES right: identifying inconsistent chemical identities in the ECHA database, PubChem and the CompTox Chemicals Dashboard. Environmental Science: Advances. 2023;2(4):612-21.doi: 10.1039/D3VA00023G

Ayipo YO, Ahmad I, Najib YS, Sheu SK, Patel H, Mordi MN. Molecular modelling and structure-activity relationship of a natural derivative of o-hydroxybenzoate as a potent inhibitor of dual NSP3 and NSP12 of SARS-CoV-2: In silico study. J Biomol Struct Dyn. 2023;41(5):1959-77. doi: 10.1080/07391102.2022.2026818.

Abhishek AG, Saini A, Nagarajan K, Bhatt P, Kapoor G, Mehta S, Mishra S, Shrivastava S, Ahlawat A, Shrivastava A, Kamboj S. Comparative In-Silico Screening of Potent Peptide Leads Using Docking Strategy & AI Approaches For The Treatment of Liver Cancer. J Pharm Negat. 2023:3144-52.doi: 10.47750/pnr.2022.13.03.175

Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial investigations in dentistry. 2020 1;7(1):105-9.doi: 10.1080/07391102.2023.2023254

Sukandar EY, Fidrianny IR, Susanto ER, Safitri DE. The study of antifungal activity from indigenous plants from Indonesia: An in vitro study. Asian J Pharm Clin Res. 2017;10(1):196-201.doi:10.22159/ajpcr.2017.v10i1.14838

Yit KH, Zainal-Abidin Z. Antimicrobial Potential of Natural Compounds of Zingiberaceae Plants and their Synthetic Analogues: A Scoping Review of In vitro and In silico Approaches. Current Topics in Medicinal Chemistry. 2024 May 1;24(13):1158-84.doi:10.2174/0115680266294573240328050629

Rigane G, Mnif S, Ben Salem R. One step purification of 6-shogaol from Zingiber officinale Rosc. o, a phenolic compound having a high effectiveness against bacterial strains. Revue Roumaine de Chimie. 2018;63(1):5-10.

Lorna Hamman L, Hyedima Garba S, Watson Jacks T, VandiZirahei J, Isaac Dibal N, Orendu Oche Attah M. Acute Toxicity and Effect of Prolonged Oral administration of Zingiber officinale ethanol extract on Liver and Kidney Histology in Rats. Arid Zone J Basic and App Res. 2022 Jun 29;17–23. doi: 10.55639/607fedc

Mohammed SA, Aliyu AY. Comparative Phytochemical Screening and Acute Toxicity Study of Two Varieties of Ginger, Zingiber officinale. UMYU Scientifica. 2022 Sep 29;1(1):6-11.doi:10.56919/usci.1122.002

Okediran BS, Suleiman KY, Adah AS, Sanusi F. Mitigation of lead acetate induced toxicity by ginger (Zingiber officinale). Ann Clin Toxicol. 2019; 2 (2). 2019;1020.doi:10.4038/cjs.v47i2.7512

Okesola MA, Ajiboye BO, Oyinloye BE, Ojo OA. Effect of Zingiber officinale on some biochemical parameters and cytogenic analysis in lead-induced toxicity in experimental rats. Toxicology Mechanisms and Methods. 2019 May 4;29(4):255-62.doi:10.1080/15376516.2018.1558321

Plengsuriyakarn T, Na-Bangchang K. Preclinical toxicology and anticholangiocarcinoma activity of oral formulation of standardized extract of Zingiber officinale. Planta Medica. 2020 Jan;86(02):104-12.doi:10.1055/a-1041-7556

Park M, Bae J, Lee DS. Antibacterial activity of [10]‐gingerol and [12]‐gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2008 Nov;22(11):1446-9.doi:10.1002/ptr.2484

Giriraju A, Yunus GY. Assessment of antimicrobial potential of 10% ginger extract against Streptococcus mutans, Candida albicans, and Enterococcus faecalis: An: in vitro: study. Indian journal of dental research. 2013 Jul 1;24(4):397-400.doi:10.4103/0970-9290.118017

Khan I, Khan A. Medicinal plants as alternative treatments for oral health problems. Asian Journal of Pharmaceutical and Clinical Research. 2018; 11(9):58-64.doi: 10.22159/ajpcr.2018.v11i9.24918

Ahmed N, Karobari MI, Yousaf A, Mohamed RN, Arshad S, Basheer SN, Peeran SW, Noorani TY, Assiry AA, Alharbi AS, Yean CY. The antimicrobial efficacy against selective oral microbes, antioxidant activity and preliminary phytochemical screening of Zingiber officinale. Infection and Drug Resistance. 2022 Jan 1:2773-85.doi:10.2147/IDR.S343417

Abouelsoued DM, Shaapan RM, Elkhateeb RM, Elnattat WS, Hammam AM, Hammam AM. Therapeutic efficacy of ginger (Zingiber officinale), ginseng (Panax ginseng) and sage (Salvia officinalis) against Cryptosporidium parvum in experimentally infected mice. Egyptian Journal of Veterinary Sciences. 2020 Jul 1;51(2):241-51.doi:10.21608/ejvs.2020.23057.1193

Published

10-09-2024

How to Cite

MINASARI, TYASINGSIH, F. D., NASUTION, R. O., & SHAKIRA, F. N. (2024). COMPUTATIONAL ANALYSIS, IN SILICO TOXICITY PREDICTION AND IN VITRO ANTIMICROBIAL EFFICACY OF ZINGIBER OFFICINALE ROSC. EXTRACT AGAINST PORPHYROMONAS GINGIVALIS. International Journal of Applied Pharmaceutics, 16(6). https://doi.org/10.22159/ijap.2024v16i6.51740

Issue

Section

Original Article(s)