FORMULATION, CHARACTERIZATION, AND TYROSINASE INHIBITORY ASSAYS OF NIACINAMIDE-LOADED NANOPARTICLE GEL AS A SKIN WHITENING AGENT

Authors

DOI:

https://doi.org/10.22159/ijap.2024v16i5.51750

Keywords:

Niacinamide, Gel, Nanoparticle, Tyrosinase, Whitening skin

Abstract

Objective: This research aims to formulate a nanoparticle gel of Niacinamide (N) using Chitosan (C) and Sodium Alginate (SA) and determine its tyrosinase inhibitory activity as a skin whitening.

Methods: N nanoparticle was carried out using C (0.01%), SA (0.1%), and Calcium Chloride (CC 0.25 %). N was incorporated into the nanoparticle system by different concentrations in each Formula (F): F1(2.5 %), F2 (5%), F3 (7.5%), and F4 (10%). Each formula was characterized for particle size, Polydispersity Index (PI), and Zeta potential by Zetasizer, entrapment efficiency using Spectrophotometer Uv-Vis, and molecular structure using Fourrier Transform Infrared (FTIR). Then, Hydroxy Propyl Methyl Cellulose (HPMC) was incorporated to form a nanoparticle gel of N. N-loaded nanoparticle gel was determined tyrosinase inhibitory using L-tyrosine to obtain Inhibitory Concentration of 50 (IC50) value. Furthermore, data was analyzed using one-way ANOVA (p-value<0.05).

Results: The particle size, PI, Zeta potential, and entrapment efficiency obtained for all formulations were found to be F1 (217±7.21 nm, 0.49±0.0521,+8.24±1.75 mV, and 61.22±2.88 %); F2 (225±11.37 nm, 0.51±0.0246,+9.12± 1.97 mV, and 64.01±4.12%); F3 (289±15.26 nm, 0.26±0.0152,+10.55± 1.56 mV, and 68.71±3.86 %); F4 (428±9.44 nm, 0.38±0.0347, 12.33±1.80 mV, and 72.59±3.01%) respectively. The result of FTIR spectra indicated N-loaded in the nanoparticles system. Tyrosinase inhibitory activity of N-loaded gel nanoparticles obtained IC50 99.9775, 73.5605, 52.7187, and 42.3145 μg/ml, respectively.

Conclusion: N-loaded nanoparticle gel was successfully prepared and could be a promising candidate for skin whitening agent.

Downloads

Download data is not yet available.

References

Chuklin P, NA Ranong S, Juntaramontee K, Charoenrat C, Prohmvitak S. Perception on Asian beauty standard: a global perspective. ASEAN International Sandbox Conferences; 2023. http://aseansandbox.org.

Lakshmi VV, Radhika V, Munje G. Purchase pattern of skin care products among women. Biological Forum an International Journal. 2022;15(1):356-66.

Mahalakshmi K, Geetha B, Prasad S. Consumers buying behavior towards cosmetics among women with reference to Coimbatore City. J Manag Entrep. 2024;17(2 (XVI)):35-43.

Soyata A, Chaerunnisa AY. Whitening agent: mekanisme, sumber dari alam dan teknologi formulasinya. Majalah Farmasetika. 2021;6(2):169-86. doi: 10.24198/mfarmasetika.v6i2.28139.

Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol. 2002;147(1):20-31. doi: 10.1046/j.1365-2133.2002.04834.x, PMID 12100180.

Basto R, Andrade R, Nunes C, Lima SA, Reis S. Delivery of niacinamide to skin using hybrid nanogels enhances photoprotection effect. Pharmaceutics Topical; 2021. doi: 10.3390/pharmaceutics, PMID 34834883.

Gharat S, Ghadge A, Phalak SD, Bodke V, Gavand A, Ganvir D. A review on template synthesis of nanoparticle. Int J Pharm Pharm Sci. 2024;16(5):22-9. doi: 10.22159/ijpps.2024v16i5.50661.

Khan S, Dubey N, Khare B, Jain H, Jain PK. Preparation and characterization of alginate chitosan crosslinked nanoparticles bearing drug for the effective management of ulcerative colitis. Int J Curr Pharm Sci. 2022;14(5):48-61. doi: 10.22159/ijcpr.2022v14i5.2040.

Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol. 2014;71:141-6. doi: 10.1016/j.ijbiomac.2014.05.036, PMID 24863916.

Nalini T, Basha SK, Mohamed Sadiq AM, Kumari VS, Kaviyarasu K. Development and characterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation. J Drug Deliv Sci Technol. 2019;52:65-72. doi: 10.1016/j.jddst.2019.04.002.

Emami J, Boushehri MS, Varshosaz J. Preparation, characterization and optimization of glipizide controlled release nanoparticles. Res Pharm Sci. 2014;9(5):301-14. PMID 25657802.

El-Feky GS, El-Banna ST, El-Bahy GS, Abdelrazek EM, Kamal M. Alginate coated chitosan nanogel for the controlled topical delivery of silver sulfadiazine. Carbohydr Polym. 2017;177:194-202. doi: 10.1016/j.carbpol.2017.08.104, PMID 28962758.

Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ. Nanotechnology in cosmetics and cosmeceuticals-a review of latest advancements. Gels. 2022;8(3):1-31. doi: 10.3390/gels8030173, PMID 35323286.

Karanam M, Gottemukkula L. A review of nanogels as novel drug delivery systems. Asian J Pharm Clin Res. 2023;16(4):10-7. doi: 10.22159/ajpcr.2023.v16i4.46790.

Yuwono T, Nurani LH, Rizki MI, Kraisintu DK. The development of chitosan nanoparticles from Hibiscus sabdariffa l calyx extract from Indonesia and Thailand. Nurkhasanah Int J Pharm Sci Res. 2015;6(5):1855-61. doi: 10.13040/IJPSR.0975-8232.6(5).1855-61.

Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011;59(17):9280-9. doi: 10.1021/jf202135j, PMID 21797282.

Gautham U, Patil A, Hemanth G. Formulation and evaluation of nanoparticle drug delivery system for treatment of hypertension. Int J App Pharm. 2023;15(6):90-7. doi: 10.22159/ijap.2023v15i6.48971.

Jyothi D, Priya S, James JP. Development and optimization of polymeric nanoparticles of glycyrrhizin: physicochemical characterization and antioxidant activity. Int J App Pharm. 2024;16(1):166-71. doi: 10.22159/ijap.2024v16i1.49164.

Altunay N. Optimization of ultrasound-assisted dispersive liquid–liquid microextraction of niacinamide in pharmaceutical and cosmetic samples using experimental design. Microchem J. 2021;170. doi: 10.1016/j.microc.2021.106659.

Batubara I, Darusman LK, Mitsunaga T, Rahminiwat M, Djauhari E. Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J of Biological Sciences. 2010;10(2):138-44. doi: 10.3923/jbs.2010.138.144.

Sagala Z, Ripaldo F. Inhibitory of tyrosinase enzym activity assay and antioxidant activity assay of Harendong (Melastoma malabathricum L.) ethanol extract in vitro. Indonesia Natural Research Pharmaceutical Journal. 2020;5(1). doi: 10.52447/inspj.v5i1.1800.

Jo HJ, Joo SM, Kim JY, Yu KH, Kim SW. Development of a hybrid chitosan and niacinamide-coupled ZnO nanoparticle composite for sun protection application. Nanomater. 2019;2019:1-9. doi: 10.1155/2019/5957606.

Salatin S, Barar J, Barzegar Jalali MB, Adibkia K, Kiafar F, Jelvehgari M. An alternative approach for improved entrapment efficiency of hydrophilic drug substance in PLGA nanoparticles by interfacial polymer deposition following solvent displacement. Jundishapur J Nat Pharm Prod. 2018;13(4):e12873. doi: 10.5812/JJNPP.12873.

Sahudin S, Sahrum Ayumi N, Kaharudin N. Enhancement of skin permeation and penetration of β-arbutin fabricated in chitosan nanoparticles as the delivery system. Cosmetics. 2022;9(6). doi: 10.3390/cosmetics9060114.

Raditya I, Effiniora A, Mahdi J. Preparasi nanogel verapamil hidroklorida menggunakan metode gelasi ionik antara kitosan-natrium tripolifosfat sebagai sediaan antihipertesi. J Farmasi Indones. 2013;6:201-10.

Liu BR, Chan MH, Chen HH, Lo SY, Huang YW, Lee HJ. Chapter 3 Mandraccia L, Slavin G. editors. Effects of surface charge and particle size of cell-penetrating peptide/nanoparticle complexes on cellular internalization in cell membrane. New York: Nova Science Publishers; 2013.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2). doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;13(2):255. doi: 10.4314/tjpr.v12i2.19.

Benamer Oudih S, Tahtat D, Nacer Khodja A, Mahlous M, Hammache Y, Guittoum AE. Chitosan nanoparticles with controlled size and zeta potential. Polym Eng Sci. 2023;63(3):1011-21. doi: 10.1002/pen.26261.

Antoniou J, Liu F, Majeed H, Qi J, Yokoyama W, Zhong F. Physicochemical and morphological properties of size controlled chitosan tripolyphosphate nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;465:137-46. doi: 10.1016/j.colsurfa.2014.10.040.

Pham DT, Saelim N, Tiyaboonchai W. Design of experiments model for the optimization of silk fibroin-based nanoparticles. Int J App Pharm. 2018;10(5):195-201, doi: 10.22159/ijap.2018v10i5.28139.

Sumathi R, Tamizharasi S, Sivakumar T. Formulation and evaluation of polymeric nanosuspension of naringenin. Int J App Pharm. 2017;9(6):10-5. doi: 10.22159/ijap.2017v9i6.21674.

Morsi N, Ghorab D, Refai H, Teba H. Preparation and evaluation of alginate/chitosan nanodispersions for ocular delivery. Int J Pharm Pharm Sci. 2015;7:234-40.

Abul Kalam MA, Khan AA, Khan S, Almalik A, Alshamsan A. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box–Behnken experimental design. Int J Biol Macromol. 2016;87:329-40. doi: 10.1016/j.ijbiomac.2016.02.033, PMID 26893052.

Abosabaa SA, ElMeshad AN, Arafa MG. Chitosan nanocarrier entrapping hydrophilic drugs as advanced polymeric system for dual pharmaceutical and cosmeceutical application: a comprehensive analysis using box-behnken design. Polymers. 2021;13(5):1-16. doi: 10.3390/polym13050677, PMID 33668161.

Lin YS, Chen SH, Huang WJ, Chen CH, Chien MY, Lin SY. Effects of nicotinic acid derivatives on tyrosinase inhibitory and antioxidant activities. Food Chem. 2012;132(4):2074-80. doi: 10.1016/j.foodchem.2011.12.052.

Li Y, Xiang H, Xue X, Chen Y, He Z, Yu Z. Dual antimelanogenic effect of nicotinamide-stabilized phloretin nanocrystals in larval zebrafish. Pharmaceutics. 2022;14(9):1-14. doi: 10.3390/pharmaceutics14091825, PMID 36145574.

Wohlrab J, Kreft D. Niacinamide-mechanisms of action and its topical use in dermatology. Skin Pharmacol Physiol. 2014;27(6):311-5. doi: 10.1159/000359974, PMID 24993939.

Published

07-09-2024

How to Cite

AHDYANI, R., LATIFAH, N., SA’ADAH, H., FATMASARI, E., & ZAMZANI, I. (2024). FORMULATION, CHARACTERIZATION, AND TYROSINASE INHIBITORY ASSAYS OF NIACINAMIDE-LOADED NANOPARTICLE GEL AS A SKIN WHITENING AGENT. International Journal of Applied Pharmaceutics, 16(5), 266–274. https://doi.org/10.22159/ijap.2024v16i5.51750

Issue

Section

Original Article(s)