A NETWORK PHARMACOLOGY-BASED DRUG REPURPOSING STUDY OF LEVETIRACETAM UNCOVERS ITS INTERACTION WITH MULTI-DRUG TARGETS IN PARKINSON'S DISEASE

Authors

  • NEERAJ PANDEY Department of Pharmacology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research, Chennai-600116, India https://orcid.org/0009-0001-3845-8776
  • V. P KARTHIK Department of Pharmacology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research, Chennai-600116, India https://orcid.org/0000-0003-2974-8293
  • PREETHA SELVA Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India https://orcid.org/0000-0002-9345-8445
  • PHILO HAZEENA Department of Neurology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research, Chennai-600116, India https://orcid.org/0000-0001-6221-431X

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51887

Keywords:

Parkinson’s diseases, Levetiracetam, Network pharmacology, Molecular docking, MD simulation, SLC6A3

Abstract

Objective: The current study utilized network pharmacology to examine how Levetiracetam interacts with specific drug targets associated with Parkinson's Disease (PD) treatment.

Methods: We used information from Kyoto Encyclopedia of Genes and Genome (KEGG) studies and Protein-Protein Interaction (PPI) pathway analysis to create a network that depicts the relationships between Levetiracetam and PD targets. Further investigation involved PPI analysis, molecular docking, and Molecular Dynamics (MD) simulation studies, ultimately pinpointing five protein targets. Their participation in pathways such as Ribonucleic acid Polymerase II-specific Deoxyribonucleic acid binding Transcription Factor Binding (Gene Ontology [GO]:0061629), Axon (GO:0030424), and Excitatory Postsynaptic Potential was emphasized by GO and KEGG pathway enrichment. Additionally, Dopamine Receptor D2 (DRD2), Solute Carrier Family 6 Member 3 (SLC6A3), Glycogen Synthase Kinase 3 Beta (GSK3B), Poly (ADP-ribose) Polymerase 1 (PARP1) and Myeloperoxidase (MPO) were identified as protein targets through PPI and molecular docking analysis.

Results: The results of molecular docking showed that protein targets, SLC6A3 have highest binding affinity with Levetiracetam. The MD Simulation result of Levetiracetam-SLC6A3 docked complex represented the complex to be quite stable with few conformational changes in the SLC6A3 structure. DRD2, SLC6A3, GSK3B, PARP1, MPO were recognized as the likely protein targets of Levetiracetam for treating PD. SLC6A3 was considered as a target of Levetiracetam in PD.

Conclusion: Our study revealed the mechanism of Levetiracetam in the treatment of PD and can contribute to more effective treatment for the same. By identifying key protein targets, this research lays the groundwork for future studies that could further explore Levetiracetam’s efficacy.

Downloads

Download data is not yet available.

References

DeMaagd G, Philip A. Parkinson's Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. P T. 2015 Aug;40(8):504-32. PMID: 26236139; PMCID: PMC4517533.

Fariello RG, Lieberman A. Present and future approaches to Parkinson disease: from molecular insights to new therapeutic avenues. Neurology. 2006 Oct 10;67(7 Suppl 2):S1-4. doi: 10.1212/wnl.67.7_suppl_2.s1. PMID: 17039593.

Jankovic J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76. doi: 10.1136/jnnp.2007.131045. PMID: 18344392.

Shulman JM, De Jager PL, Feany MB. Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6:193-222. doi: 10.1146/annurev-pathol-011110-130242. PMID: 21034221.

Noyer M, Gillard M, Matagne A, Hénichart JP, Wülfert E. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol. 1995 Nov 14;286(2):137-46. doi: 10.1016/0014-2999(95)00436-o. PMID: 8605950.

Lyseng-Williamson KA. Levetiracetam: a review of its use in epilepsy. Drugs. 2011 Mar 5;71(4):489-514. doi: 10.2165/11204490-000000000-00000. PMID: 21395360.

Dissanayaka N, Pourzinal D, Byrne GJ, Yang J, McMahon KL, Pontone GM, O'Sullivan JD, Adam R, Littleford R, Chatfield M, Lehn A, Mari Z, Bakker A. Levetiracetam for the treatment of mild cognitive impairment in Parkinson's disease: a double-blind controlled proof-of-concept trial protocol. Pilot Feasibility Stud. 2023 Nov 22;9(1):189. doi: 10.1186/s40814-023-01406-y. PMID: 37993889; PMCID: PMC10664284.

Lin CY, Chang MC, Jhou HJ. Effect of Levetiracetam on Cognition: A Systematic Review and Meta-analysis of Double-Blind Randomized Placebo-Controlled Trials. CNS Drugs. 2024 Jan;38(1):1-14. doi: 10.1007/s40263-023-01058-9. Epub 2023 Dec 15. PMID: 38102532.

Abraham A, Bay AA, Ni L, Schindler N, Singh E, Leeth E, Bozorg A, Hart AR, Hackney ME. Gender differences in motor and non-motor symptoms in individuals with mild-moderate Parkinson's disease. PLoS One. 2023 Jan 11;18(1):e0272952. doi: 10.1371/journal.pone.0272952. PMID: 36630320; PMCID: PMC9833587.

Mateev EM, Valkova IV, Georgieva MA, Zlatkov AL. Database enrichments of MAO-B through ensemble docking. Int. J. Pharm. Pharm. Sci. 2021;13:32-5. DOI: https://dx.doi.org/10.22159/ijpps.2021v13i8.41956

Sarma P, Bhattacharyya A. Models of epilepsy used in antiepileptic drug discovery: A review. Journal of Pharmacy and Pharmaceutical Sciences. 2014 Nov 1:7-1. https://www.deshawresearch.com/publications/Desmond-GPU_Performance_April_2021.pdf

Mahfudin U, Subarnas A, Wilarp G, Hermant F. Potential activity of kaempferol as Anti-Parkinson’s; molecular docking and pharmacophore modelling study. International Journal of Applied Pharmaceutics. 2023;15(3), 43–48. doi: https://dx.doi.org/10.22159/ijap.2023v15i3.47355.

Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 Jul 2;47(W1):W357-W364. doi: 10.1093/nar/gkz382. PMID: 31106366; PMCID: PMC6602486.

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109. doi: 10.1093/nar/gky1033. PMID: 30371825; PMCID: PMC6324075.

Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839. doi: 10.1093/nar/gkw943. Epub 2016 Oct 19. PMID: 27924018; PMCID: PMC5210640.

Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839. doi: 10.1093/nar/gkw943. Epub 2016 Oct 19. PMID: 27924018; PMCID: PMC5210640.

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33. doi: 10.1002/cpbi.5. PMID: 27322403.

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013 Apr 15;14:128. doi: 10.1186/1471-2105-14-128. PMID: 23586463; PMCID: PMC3637064.

Racine JS. RStudio: a platform-independent IDE for R and Sweave. doi:10.2307/41337225

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011 Feb 1;27(3):431-2. doi: 10.1093/bioinformatics/btq675. Epub 2010 Dec 12. PMID: 21149340; PMCID: PMC3031041.

von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003 Jan 1;31(1):258-61. doi: 10.1093/nar/gkg034. PMID: 12519996; PMCID: PMC165481.

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S11. doi: 10.1186/1752-0509-8-S4-S11. Epub 2014 Dec 8. PMID: 25521941; PMCID: PMC4290687.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi: 10.1002/jcc.21334. PMID: 19499576; PMCID: PMC3041641.

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33. PMID: 21982300; PMCID: PMC3198950.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235. PMID: 10592235; PMCID: PMC102472.

Baroroh U, Biotek M, Muscifa ZS, Destiarani W, Rohmatullah FG, Yusuf M. Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer. Indonesian Journal of Computational Biology (IJCB). 2023 Jul 21;2(1):22-30. doi: https://doi.org/10.24198/ijcb.v2i1.46322

Bergdorf M, Robinson-Mosher A, Guo X, Law KH, Shaw DE. Desmond/GPU performance as of April 2021. DE Shaw Research, Tech. Rep. DESRES/TR–2021-01. 2021 Apr.

Šerý O, Paclt I, Drtílková I, Theiner P, Kopečková M, Zvolský P, Balcar VJ. A 40-bp VNTR polymorphism in the 3'-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behav Brain Funct. 2015 Jun 11;11:21. doi: 10.1186/s12993-015-0066-8. PMID: 26058807; PMCID: PMC4472402.

Greenbaum L, Lerer B. Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry. 2009 Oct;14(10):912-45. doi: 10.1038/mp.2009.59. Epub 2009 Jun 30. PMID: 19564872.

Blackstone C. Infantile parkinsonism-dystonia: a dopamine "transportopathy". J Clin Invest. 2009 Jun;119(6):1455-8. doi: 10.1172/jci39632. PMID: 19504720; PMCID: PMC2689103.

Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 1992 Dec;14(4):1104-6. doi: 10.1016/s0888-7543(05)80138-7. PMID: 1478653.

Akrioti E, Karamitros T, Gkaravelas P, Kouroupi G, Matsas R, Taoufik E. Early Signs of Molecular Defects in iPSC-Derived Neural Stems Cells from Patients with Familial Parkinson's Disease. Biomolecules. 2022 Jun 23;12(7):876. doi: 10.3390/biom12070876. PMID: 35883433; PMCID: PMC9313424.

Hang CL, Sivakumar S, Kitt WW, Motalebi F. Gait Analysis for Parkinson’s Patients by using Wrist Acceleration. In2023 International Conference on Digital Applications, Transformation & Economy (ICDATE) 2023 Jul 14 (pp. 1-7). IEEE. doi:10.1109/ICDATE58146.2023.10248734

Yadav R, Kumaravelu P, Umamaheswari S, Subramanian V, Kantipudi JS, Identification of the Secondary Metabolites of Sargassum Tenerrimum and their Molecular Docking Analysis against the Targets of Anxiety, Depression and Cognitive Disorder, Letters in Drug Design & Discovery. 2024; 21(10):1819-1832. doi: 10.2174/1570180820666230508163010

AlShimemeri S, Fox SH, Visanji NP. Emerging drugs for the treatment of L-DOPA-induced dyskinesia: an update. Expert Opin Emerg Drugs. 2020 Jun;25(2):131-144. doi: 10.1080/14728214.2020.1763954. Epub 2020 May 22. PMID: 32366130.

Published

31-08-2024

How to Cite

PANDEY, N., KARTHIK, V. P., SELVA, . P., & HAZEENA, P. (2024). A NETWORK PHARMACOLOGY-BASED DRUG REPURPOSING STUDY OF LEVETIRACETAM UNCOVERS ITS INTERACTION WITH MULTI-DRUG TARGETS IN PARKINSON’S DISEASE. International Journal of Applied Pharmaceutics, 16(6). https://doi.org/10.22159/ijap.2024v16i6.51887

Issue

Section

Original Article(s)