A NETWORK PHARMACOLOGY-BASED DRUG REPURPOSING STUDY OF LEVETIRACETAM UNCOVERS ITS INTERACTION WITH MULTI-DRUG TARGETS IN PARKINSON'S DISEASE

Authors

  • NEERAJ PANDEY Department of Pharmacology, SRMC and RI, Sri Ramachandra Institute of Higher Education and Research, Chennai-600116, India https://orcid.org/0009-0001-3845-8776
  • V. P. KARTHIK Department of Pharmacology, SRMC and RI, Sri Ramachandra Institute of Higher Education and Research, Chennai-600116, India https://orcid.org/0000-0003-2974-8293
  • PREETHA SELVA Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India https://orcid.org/0000-0002-9345-8445
  • PHILO HAZEENA Department of Neurology, SRMC and RI, Sri Ramachandra Institute of Higher Education and Research, Chennai-600116, India https://orcid.org/0000-0001-6221-431X

DOI:

https://doi.org/10.22159/ijap.2024v16i6.51887

Keywords:

Parkinson’s diseases, Levetiracetam, Network pharmacology, Molecular docking, MD simulation, SLC6A3

Abstract

Objective: The current study utilized network pharmacology to examine how Levetiracetam interacts with specific drug targets associated with Parkinson's Disease (PD) treatment.

Methods: We used information from Kyoto Encyclopedia of Genes and Genome (KEGG) studies and Protein-Protein Interaction (PPI) pathway analysis to create a network that depicts the relationships between Levetiracetam and PD targets. Further investigation involved PPI analysis, molecular docking, and Molecular Dynamics (MD) simulation studies, ultimately pinpointing five protein targets. Their participation in pathways such as Ribonucleic acid Polymerase II-specific Deoxyribonucleic acid binding Transcription Factor Binding (Gene Ontology [GO]:0061629), Axon (GO: 0030424), and Excitatory Postsynaptic Potential was emphasized by GO and KEGG pathway enrichment. Additionally, Dopamine Receptor D2 (DRD2), Solute Carrier Family 6 Member 3 (SLC6A3), Glycogen Synthase Kinase 3 Beta (GSK3B), Poly (ADP-ribose) Polymerase 1 (PARP1) and Myeloperoxidase (MPO) were identified as protein targets through PPI and molecular docking analysis.

Results: The results of molecular docking showed that protein targets, SLC6A3, have highest binding affinity with Levetiracetam. The MD Simulation result of Levetiracetam-SLC6A3 docked complex represented the complex to be quite stable with few conformational changes in the SLC6A3 structure. DRD2, SLC6A3, GSK3B, PARP1, MPO were recognized as the likely protein targets of Levetiracetam for treating PD. SLC6A3 was considered as a target of Levetiracetam in PD.

Conclusion: Our study revealed the mechanism of Levetiracetam in the treatment of PD and can contribute to more effective treatment for the same. By identifying key protein targets, this research lays the groundwork for future studies that could further explore Levetiracetam’s efficacy.

Downloads

Download data is not yet available.

References

DeMaagd G, Philip A. Parkinsons disease and its management: part 1: disease entity risk factors pathophysiology clinical presentation and diagnosis. PT. 2015 Aug;40(8):504-32. PMID 26236139, PMCID PMC4517533.

Fariello RG, Lieberman A. Present and future approaches to parkinson disease: from molecular insights to new therapeutic avenues. Neurology. 2006 Oct 10;67(7)Suppl 2:S1-4. doi: 10.1212/wnl.67.7_suppl_2.s1, PMID 17039593.

Jankovic J. Parkinsons disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76. doi: 10.1136/jnnp.2007.131045, PMID 18344392.

Shulman JM, DE Jager PL, Feany MB. Parkinsons disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6:193-222. doi: 10.1146/annurev-pathol-011110-130242, PMID 21034221.

Noyer M, Gillard M, Matagne A, Henichart JP, Wulfert E. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol. 1995 Nov 14;286(2):137-46. doi: 10.1016/0014-2999(95)00436-o, PMID 8605950.

Lyseng Williamson KA. Levetiracetam: a review of its use in epilepsy. Drugs. 2011 Mar 5;71(4):489-514. doi: 10.2165/11204490-000000000-00000, PMID 21395360.

Dissanayaka N, Pourzinal D, Byrne GJ, Yang J, McMahon KL, Pontone GM. Levetiracetam for the treatment of mild cognitive impairment in Parkinsons disease: a double-blind controlled proof of concept trial protocol. Pilot Feasibility Stud. 2023 Nov 22;9(1):189. doi: 10.1186/s40814-023-01406-y, PMID 37993889, PMCID PMC10664284.

Lin CY, Chang MC, Jhou HJ. Effect of levetiracetam on cognition: a systematic review and meta-analysis of double-blind randomized placebo-controlled trials. CNS Drugs. 2024 Jan;38(1):1-14. doi: 10.1007/s40263-023-01058-9, PMID 38102532.

Abraham A, Bay AA, NI L, Schindler N, Singh E, Leeth E. Gender differences in motor and non-motor symptoms in individuals with mild moderate parkinsons disease. Plos One. 2023 Jan 11;18(1):e0272952. doi: 10.1371/journal.pone.0272952, PMID 36630320, PMCID PMC9833587.

Mateev EM, Valkova IV, Georgieva MA, Zlatkov AL. Database enrichments of MAO-B through ensemble docking. Int J Pharm Pharm Sci. 2021;13(8):32-5. doi: 10.22159/ijpps.2021v13i8.41956.

Sarma P, Bhattacharyya A. Models of epilepsy used in antiepileptic drug discovery: a review. J Pharm Pharm Sci. 2014 Nov 1;16(11):7-1.

Mahfudin U, Subarnas A, Wilar G, Hermanto F. Potential activity of kaempferol as anti-parkinsons; molecular docking and pharmacophore modelling study. Int J App Pharm. 2023;15(3):43-8. doi: 10.22159/ijap.2023v15i3.47355.

Daina A, Michielin O, Zoete V. Swiss target prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 Jul 2;47(W1):W357-64. doi: 10.1093/nar/gkz382, PMID 31106366, PMCID PMC6602486.

Kim S, Chen J, Cheng T, Gindulyte A, HE J, He S. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-9. doi: 10.1093/nar/gky1033, PMID 30371825, PMCID PMC6324075.

Pinero J, Bravo A, Queralt Rosinach N, Gutierrez Sacristan A, Deu Pons J, Centeno E. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-9. doi: 10.1093/nar/gkw943, PMID 27924018, PMCID PMC5210640.

Pinero J, Bravo A, Queralt Rosinach N, Gutierrez Sacristan A, Deu Pons J, Centeno E. Disgenet: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-9. doi: 10.1093/nar/gkw943, PMID 27924018, PMCID PMC5210640.

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33. doi: 10.1002/cpbi.5, PMID 27322403.

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013 Apr 15;14:128. doi: 10.1186/1471-2105-14-128, PMID 23586463, PMCID PMC3637064.

Racine JS. R Studio: a platform independent IDE for R and Sweave. J of Applied Econometrics. 2012;27(1):167-72. doi: 10.1002/jae.1278.

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011 Feb 1;27(3):431-2. doi: 10.1093/bioinformatics/btq675, PMID 21149340, PMCID PMC3031041.

Von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. String: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003 Jan 1;31(1):258-61. doi: 10.1093/nar/gkg034, PMID 12519996, PMCID PMC165481.

Chin CH, Chen SH, WU HH, HO CW, KO MT, Lin CY. Cytohubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4:S11. doi: 10.1186/1752-0509-8-S4-S11, PMID 25521941, PMCID PMC4290687.

Trott O, Olson AJ. Auto dock vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi: 10.1002/jcc.21334, PMID 19499576, PMCID PMC3041641.

O Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33, PMID 21982300, PMCID PMC3198950.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H. The protein data bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235, PMID 10592235, PMCID PMC102472.

Baroroh, SSI, M Biotek U, Muscifa ZS, Destiarani W, Rohmatullah FG, Yusuf M. Molecular interaction analysis and visualization of protein ligand docking using biovia discovery studio visualizer. IJCB. 2023;2(1). doi: 10.24198/ijcb.v2i1.46322.

Bergdorf M, Robinson Mosher A, Guo X, Law KH, Shaw DE. Desmond/GPU performance as of April 2021. DE Shaw Research, Tech. Rep; 2021.

Sery O, Paclt I, Drtilkova I, Theiner P, Kopeckova M, Zvolsky P. A 40-bp VNTR polymorphism in the 3-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behav Brain Funct. 2015 Jun 11;11:21. doi: 10.1186/s12993-015-0066-8, PMID 26058807, PMCID PMC4472402.

Greenbaum L, Lerer B. Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry. 2009 Oct;14(10):912-45. doi: 10.1038/mp.2009.59, PMID 19564872.

Blackstone C. Infantile Parkinsonism Dystonia: a dopamine transportopathy. J Clin Invest. 2009 Jun;119(6):1455-8. doi: 10.1172/jci39632, PMID 19504720, PMCID PMC2689103.

Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, LI X, Jabs EW. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 1992 Dec;14(4):1104-6. doi: 10.1016/s0888-7543(05)80138-7, PMID 1478653.

Akrioti E, Karamitros T, Gkaravelas P, Kouroupi G, Matsas R, Taoufik E. Early signs of molecular defects in iPSC-derived neural stems cells from patients with familial Parkinsons disease. Biomolecules. 2022 Jun 23;12(7):876. doi: 10.3390/biom12070876, PMID 35883433, PMCID PMC9313424.

Hang CL, Sivakumar S, Kitt WW, Motalebi F. Gait analysis for Parkinsons patients by using wrist acceleration international conference on digital applications transformation and economy (ICDATE). IEEE Publications; 2023 Jul 14. p. 1-7. doi: 10.1109/ICDATE58146.2023.10248734.

Yadav R, Kumaravelu P, Umamaheswari S, Subramanian V, Kantipudi SJ. Identification of the secondary metabolites of sargassum tenerrimum and their molecular docking analysis against the targets of anxiety, depression and cognitive disorder. Lett Drug Des Discov. 2024;21(10):1819-32. doi: 10.2174/1570180820666230508163010.

Al Shimemeri S, Fox SH, Visanji NP. Emerging drugs for the treatment of L-dopa induced dyskinesia: an update. Expert Opin Emerg Drugs. 2020 Jun;25(2):131-44. doi: 10.1080/14728214.2020.1763954, PMID 32366130.

Published

07-11-2024

How to Cite

PANDEY, N., KARTHIK, V. P., SELVA, . P., & HAZEENA, P. (2024). A NETWORK PHARMACOLOGY-BASED DRUG REPURPOSING STUDY OF LEVETIRACETAM UNCOVERS ITS INTERACTION WITH MULTI-DRUG TARGETS IN PARKINSON’S DISEASE. International Journal of Applied Pharmaceutics, 16(6), 69–78. https://doi.org/10.22159/ijap.2024v16i6.51887

Issue

Section

Original Article(s)