DEVELOPMENT AND EVALUATION OF CYCLODEXTRIN NANOSPONGES-BASED TOPICAL FORMULATION OF TAZAROTENE
DOI:
https://doi.org/10.22159/ijap.2024v16i6.51926Keywords:
Tazarotene, Retinoids, Nanosponges, Carbopol-946, DiffusionAbstract
Objective: Tazarotene is used as a topical retinoid for the treatment of acne, psoriasis and sun-damaged skin. But its topical formulation has many side effects, including itching, burning, dryness, redness, stinging, rash blistering, skin discoloration, peeling at the site of application and low bioavailability. The present study focuses on the reduction of side effects and enhancement of solubility and topical bioavailability of tazarotene by using cyclodextrin-based nanosponges.
Methods: Nanosponge of tazarotene were prepared by lyophilization method. The physiochemical characterization of plain nanosponges and drug-loaded nanosponges were performed using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and X-ray Diffractometer (XRD) studies. The drug-loaded nanosponges were incorporated into a carpool-based gel formulation. The prepared formulation was evaluated for viscosity, dissolution and stability. FTIR, DSC and XRD studies confirmed the formation of inclusion complex of tazarotene with nanosponges.
Results: The particle size of the drug-loaded nanosponges was found to be in the range of 156.72 to 163.48 nm. Transmission Electron Microscopy (TEM) images revealed the regular spherical shape of both the nanosponges that are unaffected even after drug encapsulation. The pH of the gel formulations was found to be in the range of 5.86 to 6.46. The gel formulation resulted in the diffusion of drug in controlled manner for up to 24 h. The in vitro dissolution studies revealed that nanosponges-based topical formulation had better results than the marketed product.
Conclusion: Thus, the study showed that nanosponge-based gel formulation can be a possible alternative to conventional formulations of tazarotene with enhanced bioavailability and skin retention characteristics for topical application.
Downloads
References
Billi AC, Gudjonsson JE, Voorhees JJ. Psoriasis: past present, and future. J Invest Dermatol. 2019 Nov;139(11):e133-42. doi: 10.1016/j.jid.2019.08.437, PMID 31648690.
Kassir M, Karagaiah P, Sonthalia S, Katsambas A, Galadari H, Gupta M. Selective RAR agonists for acne vulgaris: a narrative review. J Cosmet Dermatol. 2020 Jun;19(6):1278-83. doi: 10.1111/jocd.13340, PMID 32100454.
Torsekar R, Gautam MM. Topical therapies in psoriasis. Indian Dermatol Online J. 2017 Jul 1;8(4):235-45. doi: 10.4103/2229-5178.209622, PMID 28761838.
Huang WW, Ahn CS. General Dermatology. Clinical manual of dermatology. Berlin: Springer; 2020. p. 31-152. doi: 10.1007/978-3-030-23940-4.
Zhu Z, Liu Y, Xue Y, Cheng X, Zhao W, Wang J. Tazarotene released from aligned electrospun membrane facilitates cutaneous wound healing by promoting angiogenesis. ACS Appl Mater Interfaces. 2019 Sep 10;11(39):36141-53. doi: 10.1021/acsami.9b13271, PMID 31503444.
Al Haj Zen AA, Nawrot DA, Howarth A, Caporali A, Ebner D, Vernet A. The retinoid agonist tazarotene promotes angiogenesis and wound healing. Mol Ther. 2016 Oct 1;24(10):1745-59. doi: 10.1038/mt.2016.153, PMID 27480772.
Fox L, Csongradi C, Aucamp M, DU Plessis J, Gerber M. Treatment modalities for acne. Molecules. 2016 Aug 13;21(8):1063. doi: 10.3390/molecules21081063, PMID 27529209.
Cosio T, Gaziano R, Zuccari G, Costanza G, Grelli S, Di Francesco P. Retinoids in fungal infections: from bench to bedside. Pharmaceuticals (Basel). 2021 Sep 24;14(10):962. doi: 10.3390/ph14100962, PMID 34681186.
Sidgiddi S, Allenby K, Okumu F, Gautam A. Bioavailability pharmacokinetics and transepidermal water loss of short contact tazarotene lotion 0.1% versus tazarotene (Tazorac®) cream 0.1%. J Clin Aesthet Dermatol. 2019 Sep;12(9):16. PMID 31641413.
Gregoriou S, Kritsotaki E, Katoulis A, Rigopoulos D. Use of tazarotene foam for the treatment of acne vulgaris. Clin Cosmet Investig Dermatol. 2014 May 27;7:165-70. doi: 10.2147/CCID.S37327, PMID 24920932.
Mahe E, Amy DE LA Breteque M, Phan C. Perspectives on the pharmacological management of psoriasis in pediatric and adolescent patients. Expert Rev Clin Pharmacol. 2021 Jul 3;14(7):807-19. doi: 10.1080/17512433.2021.1911641, PMID 33784929.
Otlewska A, Baran W, Batycka Baran A. Adverse events related to topical drug treatments for acne vulgaris. Expert Opin Drug Saf. 2020 Apr 2;19(4):513-21. doi: 10.1080/14740338.2020.1757646, PMID 32347138.
Vyas A, Kumar Sonker A, Gidwani B. Carrier based drug delivery system for treatment of acne. Scientific World Journal. 2014;2014(1):276260. doi: 10.1155/2014/276260, PMID 24688376.
Latter G, Grice JE, Mohammed Y, Roberts MS, Benson HA. Targeted topical delivery of retinoids in the management of acne vulgaris: current formulations and novel delivery systems. Pharmaceutics. 2019 Sep 24;11(10):490. doi: 10.3390/pharmaceutics11100490, PMID 31554188.
Prasad V, Chaurasia S. Performance evaluation of non-ionic surfactant based tazarotene encapsulated proniosomal gel for the treatment of psoriasis. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:168-76. doi: 10.1016/j.msec.2017.05.036, PMID 28629004.
Patel MR, Patel RB, Parikh JR, Patel BG. Novel microemulsion based gel formulation of tazarotene for therapy of acne. Pharm Dev Technol. 2016 Nov 16;21(8):921-32. doi: 10.3109/10837450.2015.1081610, PMID 26334480.
Kumar S, Dalal P, Rao R. Cyclodextrin nanosponges: a promising approach for modulating drug delivery. Colloid Sci Pharm Nanotechnol. 2020 Feb 12;79. doi: 10.5772/intechopen.90365.
Anandam S, Selvamuthukumar S. Optimization of microwave assisted synthesis of cyclodextrin nanosponges using response surface methodology. J Porous Mater. 2014 Dec;21(6):1015-23. doi: 10.1007/s10934-014-9851-2.
Kumar S, Prasad M, Rao R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: formulation physicochemical characterization antipsoriatic potential and biochemical estimation. Mater Sci Eng C Mater Biol Appl. 2021 Feb 1;119:111605. doi: 10.1016/j.msec.2020.111605, PMID 33321649.
SS, SA, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system review. J Pharm Pharm Sci. 2012 Jan 17;15(1):103-11. doi: 10.18433/j3k308, PMID 22365092.
Ahmed MM, Fatima F, Anwer MK, Ibnouf EO, Kalam MA, Alshamsan A. Formulation and in vitro evaluation of topical nanosponge based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm J. 2021 May 1;29(5):467-77. doi: 10.1016/j.jsps.2021.04.010, PMID 34135673.
Conte C, Caldera F, Catanzano O, D Angelo I, Ungaro F, Miro A. β-cyclodextrin nanosponges as multifunctional ingredient in water containing semisolid formulations for skin delivery. J Pharm Sci. 2014 Dec 1;103(12):3941-9. doi: 10.1002/jps.24203, PMID 25322671.
Singireddy A, Pedireddi SR, Subramanian S. Optimization of reaction parameters for synthesis of cyclodextrin nanosponges in controlled nanoscopic size dimensions. J Polym Res. 2019 Apr;26(4):1-2. doi: 10.1007/s10965-019-1754-0.
Pedireddi S, Singireddy A, Varma MM, Jayanthi VR. Differential properties of nanoporous nanosponges prepared from β -cyclodextrin and 2-hydroxypropyl β -cyclodextrin. Adv Sci Eng Med. 2019 Sep 1;11(9):823-35. doi: 10.1166/asem.2019.2423.
Singireddy A, Subramanian S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Part Sci Technol. 2016 May 3;34(3):341-6. doi: 10.1080/02726351.2015.1081658.
Singireddy A, Rani Pedireddi SR, Nimmagadda S, Subramanian S. Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Mater Today Proc. 2016 Jan 1;3(10):3951-9. doi: 10.1016/j.matpr.2016.11.055.
Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine. 2012;8(4):489-96. doi: 10.1016/j.nano.2011.07.004, PMID 21839053.
Bachhav YG, Patravale VB. Microemulsion based vaginal gel of fluconazole: formulation in vitro and in vivo evaluation. Int J Pharm. 2009 Jan 5;365(1-2):175-9. doi: 10.1016/j.ijpharm.2008.08.021, PMID 18790032.
El Laithy HM, El Shaboury KM. The development of cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS Pharm Sci Tech. 2002 Feb;3(4):E35. doi: 10.1208/pt030435, PMID 12916929.
Son GH, Lee BJ, Cho CW. Mechanisms of drug release from advanced drug formulations such as polymeric based drug delivery systems and lipid nanoparticles. J Pharm Investig. 2017 Jul;47(4):287-96. doi: 10.1007/s40005-017-0320-1.
Lin YK, Yang SH, Chen CC, Kao HC, Fang JY. Using imiquimod induced psoriasis like skin as a model to measure the skin penetration of anti-psoriatic drugs. PLOS ONE. 2015 Sep 10;10(9):e0137890. doi: 10.1371/journal.pone.0137890, PMID 26355594.
Neves AR, Queiroz JF, Costa Lima SA, Figueiredo F, Fernandes R, Reis S. Cellular uptake and transcytosis of lipid based nanoparticles across the intestinal barrier: relevance for oral drug delivery. J Colloid Interface Sci. 2016;463:258-65. doi: 10.1016/j.jcis.2015.10.057, PMID 26550783.
Neves AR, Queiroz JF, Costa Lima SA, Figueiredo F, Fernandes R, Reis S. Cellular uptake and transcytosis of lipid based nanoparticles across the intestinal barrier: relevance for oral drug delivery. J Colloid Interface Sci. 2016 Feb 1;463:258-65. doi: 10.1016/j.jcis.2015.10.057, PMID 26550783.
Anandam S, Selvamuthukumar S. Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization photostability and antioxidant effects. J Mater Sci. 2014 Dec;49(23):8140-53. doi: 10.1007/s10853-014-8523-6.
Cascone S, Lamberti G. Hydrogel based commercial products for biomedical applications: a review. Int J Pharm. 2020 Jan 5;573:118803. doi: 10.1016/j.ijpharm.2019.118803, PMID 31682963.
Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine. 2012;8(4):489-96. doi: 10.1016/j.nano.2011.07.004, PMID 21839053.
Published
How to Cite
Issue
Section
Copyright (c) 2024 RAVINDRA PRATAP, SRINIVAS LANKALAPALLI
This work is licensed under a Creative Commons Attribution 4.0 International License.