NOVEL HYBRIDS OF QUINOLINE LINKED PYRIMIDINE DERIVATIVES AS CYCLOOXYGENASE INHIBITORS: MOLECULAR DOCKING, ADMET STUDY, AND MD SIMULATION
DOI:
https://doi.org/10.22159/ijap.2024v16i6.52023Keywords:
Quinoline, Pyrimidine, Cyclooxygenase, Molecular docking, Molecular dynamicsAbstract
Objective: Finding novel anti-inflammatory compounds is a crucial sector of research despite the significant advances this field has made. Inefficiency and unfavorable side effects are indeed potential drawbacks of conventional therapy utilizing steroidal or nonsteroidal drugs. This study aims to screen the designed quinoline-linked pyrimidine derivatives as Cyclooxygenase (COX) inhibitors.
Methods: In the present study, we assessed the binding interactions of designed quinoline-linked pyrimidine derivatives with COX enzymes using a molecular docking approach. Using Molecular Dynamics (MD) simulations, the compound’s behavior was further investigated and its stability and conformational dynamics were demonstrated. Schrödinger's QikProp program was utilized to analyze the Absorption, Distribution, Metabolism, and Excretion (ADME) properties and toxicity properties were further investigated using Osiris Property Explorer. Additionally, the protein-ligand complexes' binding free energy has been ascertained using the Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) approach, which offered crucial information regarding the strength of their interactions.
Results: The designed quinoline-linked pyrimidine derivatives fulfilled the Lipinski Rule of Five and had physicochemical characteristics within acceptable ranges, better ADME properties, and were non-toxic. Among the designed compounds, QPDU1 and QPDT6 showed correspondingly good docking scores for COX-1 and COX-2. QPDT6 was additionally analyzed by MD simulation studies to thoroughly examine the interaction between protein and ligand and their stability.
Conclusion: The proposed compounds exhibit strong binding affinities to COX enzymes, stable interactions in MD simulations, and favorable drug-like features. These results support the need for more research and development of these substances as possible anti-inflammatory drugs.
Downloads
References
Baranwal J, Kushwaha S, Singh S, Jyoti A. A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr Phys Chem. 2023;13(1):2-19. doi: 10.2174/1877946813666221021144829.
Yadav P, Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg Chem. 2021;109:104639. doi: 10.1016/j.bioorg.2021.104639, PMID 33618829.
Kaur R, Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur J Med Chem. 2021;215:113220. doi: 10.1016/j.ejmech.2021.113220.
Kharb R, Kaur H. Therapeutic significance of quinoline derivatives as antimicrobial agents. Int Res J Pharm. 2013;4(3):63-9. doi: 10.7897/2230-8407.04311.
Singh SK, Singh S. A brief history of quinoline as antimalarial agents. Int J Pharm Sci Rev Res. 2014;25(1):295-302.
Coa JC, Castrillón W, Cardona W, Carda M, Ospina V, Muñoz JA. Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J Med Chem. 2015;101:746-53. doi: 10.1016/j.ejmech.2015.07.018, PMID 26218652.
Ilakiyalakshmi M, Arumugam Napoleon A. Review on recent development of quinoline for anticancer activities. Arab J Chem. 2022;15(11). doi: 10.1016/j.arabjc.2022.104168.
Khalifa NM, Al-Omar MA, Abd El-Galil AA, Abd El-Reheem M. Anti-inflammatory and analgesic activities of some novel carboxamides derived from 2-phenyl quinoline candidates. Biomed Res. 2017;28(2):869-74.
Mahajan P, Nikam M, Asrondkar A, Bobade A, Gill C. Synthesis, antioxidant, and anti‐inflammatory evaluation of novel thiophene‐fused quinoline based β‐diketones and derivatives. J Heterocycl Chem. 2017;54(2):1415-22. doi: 10.1002/jhet.2722.
Mandewale MC, Patil UC, Shedge SV, Dappadwad UR, Yamgar RS. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni Suef Univ J Basic Appl Sci. 2017;6(4):354-61. doi: 10.1016/j.bjbas.2017.07.005.
Das P, Deng X, Zhang L, Roth MG, Fontoura BM, Phillips MA. SAR-based optimization of a 4-quinoline carboxylic acid analog with potent anti-viral activity. ACS Med Chem Lett. 2013;4(6):517-21. doi: 10.1021/ml300464h, PMID 23930152.
Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch Pharm. 2021;354(3):e2000232. doi: 10.1002/ardp.202000232, PMID 33210348.
Mouscadet JF, Desmaële D. Chemistry and structure-activity relationship of the styryl quinoline-type HIV integrase inhibitors. Molecules. 2010;15(5):3048-78. doi: 10.3390/molecules15053048, PMID 20657464.
Zajdel P, Marciniec K, Maslankiewicz A, Grychowska K, Satała G, Duszynska B. Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT₁A/5-HT₂A/5-HT₇ and dopamine D₂/D₃ receptors. Eur J Med Chem. 2013;60:42-50. doi: 10.1016/j.ejmech.2012.11.042, PMID 23279866.
Wei CX, Deng XQ, Chai KY, Sun ZG, Quan ZS. Synthesis and anticonvulsant activity of 1-formamide-triazolo[4,3-a]quinoline derivatives. Arch Pharm Res. 2010;33(5):655-62. doi: 10.1007/s12272-010-0502-0.
Kumar A, Kumar P, Shetty CR, James JP, Shetty HC. Synthesis, antidiabetic evaluation and bioisosteric modification of quinoline incorporated 2-pyrazoline derivatives. Indian J Pharm Educ Res. 2021;55(2):574-80. doi: 10.5530/ijper.55.2.96.
Cai Z, Zhou W, Sun L. Synthesis and HMG CoA reductase inhibition of 4-thiophenyl quinolines as potential hypocholesterolemic agents. Bioorg Med Chem. 2007;15(24):7809-29. doi: 10.1016/j.bmc.2007.08.044, PMID 17851082.
Gupta SK, Mishra A. Synthesis, characterization and screening for the anti-inflammatory and analgesic activity of quinoline derivatives bearing azetidinones scaffolds. Antiinflamm Antiallergy Agents Med Chem. 2016;15(1):31-43. doi: 10.2174/1871523015666160210124545, PMID 26860581.
Wang XQ, Zhao CP, Zhong LC, Zhu DL, Mai DH, Liang MG. Preparation of 4-flexible amino-2-arylethenyl-quinoline derivatives as multi-target agents for the treatment of Alzheimer’s disease. Molecules. 2018;23(12):3100. doi: 10.3390/molecules23123100, PMID 30486440.
Sashidhara KV, Avula SR, Mishra V, Palnati GR, Singh LR, Singh N. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur J Med Chem. 2015;89:638-53. doi: 10.1016/j.ejmech.2014.10.068, PMID 25462272.
Sharma V, Chitranshi N, Agarwal AK. Significance and biological importance of pyrimidine in the microbial world. Int J Med Chem. 2014;2014(1):202784. doi: 10.1155/2014/202784, PMID 25383216.
Kalčic F, Kolman V, Ajani H, Zídek Z, Janeba Z. Polysubstituted pyrimidines as mPGES‐1 Inhibitors: discovery of potent inhibitors of PGE2 production with strong anti‐inflammatory effects in carrageenan‐induced rat paw edema. ChemMedChem. 2020;15(15):1398-407. doi: 10.1002/cmdc.202000258, PMID 32410351.
Abd El-Aleam RH, George RF, Hassan GS, Abdel-Rahman HM. Synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives: antimicrobial activity, DNA Gyrase inhibition and molecular docking. Bioorg Chem. 2020;94:103411. doi: 10.1016/j.bioorg.2019.103411.
Kumar B, Sharma P, Gupta VP, Khullar M, Singh S, Dogra N. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg Chem. 2018;78:130-40. doi: 10.1016/j.bioorg.2018.02.027, PMID 29554587.
Huang B, Kang D, Tian Y, Daelemans D, De Clercq E, Pannecouque C. Design, synthesis, and biological evaluation of piperidinyl-substituted [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential anti-HIV-1 agents with reduced cytotoxicity. Chem Biol Drug Des. 2021;97(1):67-76. doi: 10.1111/cbdd.13760, PMID 32725669.
Bruno O, Schenone S, Ranise A, Bondavalli F, Barocelli E, Ballabeni V. New polycyclic pyrimidine derivatives with antiplatelet in vitro activity: synthesis and pharmacological screening. Bioorg Med Chem. 2001;9(3):629-36. doi: 10.1016/s0968-0896(00)00272-8, PMID 11310597.
Farghaly AM, Aboul Wafa OM, Elshaier YA, Badawi WA, Haridy HH, Mubarak HA. Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med Chem Res. 2019;28(3):360-79. doi: 10.1007/S00044-019-02289-6.
Farghaly TA, Harras MF, Alsaedi AM, Thakir HA, Mahmoud HK, Katowah DF. Antiviral activity of pyrimidine containing compounds: patent review. Mini Rev Med Chem: Patent Review. 2023;23(7):821-51. doi: 10.2174/1389557523666221220142911, PMID 36545712.
Wu W, Lan W, Wu C, Fei Q. Synthesis and antifungal activity of pyrimidine derivatives containing an amide moiety. Front Chem. 2021;9:695628. doi: 10.3389/fchem.2021.695628, PMID 34322475.
Pant S, Kumar K R, Rana P, Anthwal T, Ali SM, Gupta M et al. Novel substituted pyrimidine derivatives as potential anti-alzheimer’s agents: synthesis, biological, and molecular docking studies. ACS Chem Neurosci. 2024;15(4):783-97. doi: 10.1021/acschemneuro.3c00662, PMID 38320262.
Gupta A, Bhat HR, Singh UP. Discovery of novel hybrids of Morpholino-1,3,5-triazine-pyrimidine as an anti-diabetic agent in High-fat, Low-dose Streptozotocin-induced diabetes in wistar rats: an in vitro, in silico and in vivo study. J Mol Struct. 2023;1294:136478. doi: 10.1016/j.molstruc.2023.136478.
Liu P, Yang Y, Tang Y, Yang T, Sang Z, Liu Z. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur J Med Chem. 2019;163:169-82. doi: 10.1016/j.ejmech.2018.11.054, PMID 30508666. ejmech.2018.11.054.
Nair N, Majeed J, Pandey PK, Sweety R, Thakur R. Antioxidant potential of pyrimidine derivatives against oxidative stress. Indian J Pharm Sci. 2022;84(1):14-26. doi: 10.36468/pharmaceutical-sciences.890.
Mathew B, Suresh J, Anbazhagan S. Development of novel (1- H) benzimidazole bearing pyrimidine-trione based MAO-A inhibitors: Synthesis, docking studies and antidepressant activity. J Saudi Chem Soc. 2016;20:S132-9, doi: 10.1016/j.jscs.2012.09.015.
Arora N, Pandeya SN. Synthesis and analgesic activity of novel pyrimidine derivatives. Synthesis. 2011;11(1):48-52.
Mohana KN, Prasanna Kumar BN, Mallesha L. Synthesis and biological activity of some pyrimidine derivatives. Drug Invent Today. 2013;5(3):216-22. doi: 10.1016/j.dit.2013.08.004.
Kumar B, Kumar M, Dwivedi AR, Kumar V. Synthesis, Biological Evaluation and Molecular Modeling Studies of Propargyl-Containing 2,4,6-Trisubstituted Pyrimidine Derivatives as Potential Anti-Parkinson Agents. ChemMedChem. 2018;13(7):705-12. doi: 10.1002/cmdc.201700589, PMID 29534334.
Jain KS. A Novel 2, 4-dihalothieno [2, 3-d] pyrimidine as an antihyperlipidemic agent: synthesis, biological evaluation and investigation into its mechanism of action. EC Pharmacol Toxicol. 2019;7:125-43.
Chandana L, Bhikshapathi DV. Ethnopharmacological investigation of Pleurotus ostreatus for anti-oxidative and anti-inflammatory activity in experimental animals. Asian J Pharm Clin Res. 2024;17(4):37-41. doi: 10.22159/ajpcr.2024.v17i4.49533.
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204-18. doi: 10.18632/oncotarget.23208, PMID 29467962.
El-Sharief MA, Abbas SY, El-Sharief AM, Sabry NM, Moussa Z, El-Messery SM. 5-Thioxoimidazolidine-2-one derivatives: synthesis, anti-inflammatory activity, analgesic activity, COX inhibition assay and molecular modelling study. Bioorg Chem. 2019;87:679-87. doi: 10.1016/j.bioorg.2019.03.075, PMID 30953887.
Dvorakova M, Langhansova L, Temml V, Pavicic A, Vanek T, Landa P. Synthesis, inhibitory activity, and in silico modeling of selective COX-1 inhibitors with a quinazoline core. ACS Med Chem Lett. 2021;12(4):610-6. doi: 10.1021/acsmedchemlett.1c00004, PMID 33854702.
Hawash M, Jaradat N, Hameedi S, Mousa A. Design, synthesis and biological evaluation of novel benzodioxole derivatives as COX inhibitors and cytotoxic agents. BMC Chem. 2020;14(1):54. doi: 10.1186/s13065-020-00706-1, PMID 32944715.
Cardinal S, Paquet Cote PA, Azelmat J, Bouchard C, Grenier D, Voyer N. Synthesis and anti-inflammatory activity of isoquebecol. Bioorg Med Chem. 2017;25(7):2043-56. doi: 10.1016/j.bmc.2017.01.050, PMID 28258800.
Dhawale S, Gawale S, Jadhav A, Gethe K, Raut P, Hiwarale N. In silico approach targeting polyphenol as FabH inhibitor in bacterial infection. Int J Pharm Pharm Sci. 2022;14(11):25-30. doi: 10.22159/ijpps.2022v14i11.45816.
Jays J, Saravanan J. A molecular modelling approach for structure-based virtual screening and identification of novel isoxazoles as potential antimicrobial agents against S. aureus. Int J Pharm Pharm Sci. 2024;16(4):36-41. doi: 10.22159/ijpps.2024v16i4.49731.
Elmi A, Sayem SA, Ahmed M, Abdoul-Latif F. Natural compounds from djiboutian medicinal plants as inhibitors of covid-19 by in silico investigations. Int J Curr Pharm Sci. 2020;12(4):52-7. doi: 10.22159/ijcpr.2020v12i4.39051.
Chand J, Kandy AT, Prasad K, Mathew J, Sherin F, Subramanian G. In silico, preparation and in vitro studies of benzylidene-based hydroxy benzyl urea derivatives as free radical scavengers in Parkinson’s disease. Int J App Pharm. 2024;16(3):217-24. doi: 10.22159/ijap.2024v16i3.50628.
Sachdeo R, Khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology, molecular docking, and molecular dynamics simulation. Int J App Pharm. 2024;16(2):188-94. doi: 10.22159/ijap.2024v16i2.49922.
Zafirah Ismail N, Annamalai N, Mohamad Zain NN, Arsad H. Molecular docking of selected compounds from Clinacanthus nutans with BCL-2, p53, caspase-3 and caspase-8 proteins in the apoptosis pathway. J Biol Sci Opin. 2020;8(1):4-11. doi: 10.7897/2321-6328.081119.
Baqi MA, Jayanthi K, R. Identification of benzylidene amino phenol inhibitors targeting thymidylate kinase for colon cancer treatment through in silico studies. Int J App Pharm. 2024;16(4):92-9. doi: 10.22159/ijap.2024v16i4.50874.
Mahantheshappa SS, Shivanna H, Satyanarayan ND. Synthesis, antimicrobial, antioxidant, and ADMET studies of quinoline derivatives. Eur J Chem. 2021;12(1):37-44. doi: 10.5155/eurjchem.12.1.37-44.2038.
Mhaske GS, Thorat SR, Pawar VS, Pawar RS, Jambhulkar SR, Ghumre OA. Computational Molecular Docking and In-Silico, ADMET Prediction Studies of Quinoline Derivatives as EPHB4 Inhibitor. Curr Indian Sci. 2024;02:1-16, doi: 10.2174/012210299X265033240116113623.
El-Feky SA, Abd El-Samii ZK, Osman NA, Lashine J, Kamel MA, Thabet HKh. Synthesis, molecular docking and anti-inflammatory screening of novel quinoline-incorporated pyrazole derivatives using the Pfitzinger reaction II. Bioorg Chem. 2015;58:104-16. doi: 10.1016/j.bioorg.2014.12.003. PMID 25590381.
Abdelrahman MH, Youssif BG, Abdelgawad MA, Abdelazeem AH, Ibrahim HM, Moustafa AE. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur J Med Chem. 2017;127:972-85. doi: 10.1016/j.ejmech.2016.11.006, PMID 27837994.
Published
How to Cite
Issue
Section
Copyright (c) 2024 DEEPTHI K, MANJUNATH S. KATAGI, JENNIFER FERNANDES, SHESHAGIRI DIXIT, DEEPSHIKHA SINGH
This work is licensed under a Creative Commons Attribution 4.0 International License.