PHARMACEUTICAL NANOCRYSTALS: AN EXTENSIVE OVERVIEW

Authors

  • GURUBARAN SIVANATHAN Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-6386-1201
  • SANJAI RAJAGOPAL Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-3399-0520
  • GIRIDHARA MAHADEVASWAMY Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0004-5611-2156
  • GOWTHAM ANGAMUTHU Department of Pharmaceutical Regulatory Affairs, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India
  • NAGASAMY VENKATESH DHANDAPANI Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-5361-3586

DOI:

https://doi.org/10.22159/ijap.2024v16i6.52257

Keywords:

Pharmaceutical nanocrystals, Drug delivery, Bioavailability enhancement, Nanotoxicity, Regulatory considerations, Stabilization strategies

Abstract

In pharmaceutical development, pharmaceutical nanocrystals sized between 10 and 1000 nanometers have been found to hold promise in improving drug solubility. Since they comprise only the active pharmaceutical ingredient, nanocrystals have dramatically increased surface area-to-volume ratios, ensuring improved in vitro dissolution and solubility profiles.

In view of their strengths and limitations, different production strategies have been reviewed: methods of size reduction such as wet milling and high-pressure homogenization; the bottom-up approaches of controlled precipitation and supercritical fluid technology; and efficient ways to stabilize nanocrystal formulations aided by excipients like surfactants and polymers.

Techniques used in this characterization of nanocrystals include size analysis, surface-charge measurement, and assessment of crystalline structure. The routes of administration, such as oral, injectable, inhaled, and topical application, are reviewed alongside commercially successful products and clinical trials.

This work reviews dynamic regulatory scenarios and current challenges of large-scale production, long-term stability, and nanotoxicity evaluation. In addition, it addresses the emerging trends in nanocrystal technology in the field of personalized medicine, targeted drug delivery, and theranostic approaches associated with how nanocrystals can help optimize the outcome of a patient in drug delivery systems.

Downloads

Download data is not yet available.

References

Müller RH, Gohla S, Keck CM. State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011 May;78(1):1-9. doi: 10.1016/j.ejpb.2011.01.007. Epub 2011 Jan 23. PMID: 21266197.

Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006 Jan;62(1):3-16. doi: 10.1016/j.ejpb.2005.05.009. Epub 2005 Aug 29. PMID: 16129588.

Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010 Nov;62(11):1607-21. doi: 10.1111/j.2042-7158.2010.01030.x. PMID: 21039545.

Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society. 1897 Dec;19(12):930-4.doi:https://doi.org/10.1021/ja02086a003.

Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007 Jul 30;59(7):631-44. doi: 10.1016/j.addr.2007.05.003. Epub 2007 May 25. PMID: 17601629.

Junghanns JU, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295-309. doi: 10.2147/ijn.s595. PMID: 18990939; PMCID: PMC2626933.

Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010 Nov;62(11):1569-79. doi: 10.1111/j.2042-7158.2010.01022.x. PMID: 21039542.

Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010 Oct 31;399(1-2):129-39. doi: 10.1016/j.ijpharm.2010.07.044. Epub 2010 Jul 30. PMID: 20674732.

Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013 Aug 30;453(1):142-56. doi: 10.1016/j.ijpharm.2012.09.034. Epub 2012 Sep 21. PMID: 23000841.

Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: In vivo performances. J Control Release. 2012 Jun 28;160(3):418-30. doi: 10.1016/j.jconrel.2012.03.013. Epub 2012 Mar 20. PMID: 22465393.

Müller RH, Keck CM. Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm. 2012 Jan;80(1):1-3. doi: 10.1016/j.ejpb.2011.09.012. Epub 2011 Sep 28. PMID: 21971369.

Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011 May 30;63(6):456-69. doi: 10.1016/j.addr.2011.02.001. Epub 2011 Feb 21. PMID: 21315781.

Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian journal of pharmaceutical sciences. 2015 Feb 1;10(1):13-23.doi:https://doi.org/10.1016/j.ajps.2014.08.005.

Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008 Nov 19;364(1):64-75. doi: 10.1016/j.ijpharm.2008.07.023. Epub 2008 Jul 31. PMID: 18721869.

Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011 May 30;63(6):427-40. doi: 10.1016/j.addr.2010.12.007. Epub 2011 Jan 9. PMID: 21223990.

Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF. Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm. 2009 Jun 5;374(1-2):106-13. doi: 10.1016/j.ijpharm.2009.02.015. Epub 2009 Mar 4. PMID: 19446766.

Thorat AA, Dalvi SV. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chemical Engineering Journal. 2012 Feb 1;181:1-34.doi:https://doi.org/10.1016/j.cej.2011.12.044.

Zhang JY, Shen ZG, Zhong J, Hu TT, Chen JF, Ma ZQ, Yun J. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. Int J Pharm. 2006 Oct 12;323(1-2):153-60. doi: 10.1016/j.ijpharm.2006.05.048. Epub 2006 Jun 2. PMID: 16828244.

Chattopadhyay P, Gupta RB. Production of griseofulvin nanoparticles using supercritical CO(2) antisolvent with enhanced mass transfer. Int J Pharm. 2001 Oct 9;228(1-2):19-31. doi: 10.1016/s0378-5173(01)00803-1. PMID: 11576765.

Kakran M, Sahoo NG, Li L, Judeh Z. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technology. 2012 Jun 1;223:59-64.doi:10.1016/j.powtec.2011.08.021.

Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release. 2016 Aug 10;235:337-351. doi: 10.1016/j.jconrel.2016.06.017. Epub 2016 Jun 10. PMID: 27297779.

Shekunov BY, Chattopadhyay P, Tong HH, Chow AH. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2007 Feb;24(2):203-27. doi: 10.1007/s11095-006-9146-7. Epub 2006 Dec 27. PMID: 17191094.

Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010 May;27(5):796-810. doi: 10.1007/s11095-010-0073-2. Epub 2010 Mar 4. PMID: 20204471; PMCID: PMC2852530.

Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63-70. doi: 10.1007/978-1-60327-198-1_6. PMID: 21116954.

Klang V, Valenta C, Matsko NB. Electron microscopy of pharmaceutical systems. Micron. 2013 Jan;44:45-74. doi: 10.1016/j.micron.2012.07.008. Epub 2012 Aug 8. PMID: 22921788.

Hondow N, Brydson R, Wang P, Holton MD, Brown MR, Rees P, Summers HD, Brown A. Quantitative characterization of nanoparticle agglomeration within biological media. Journal of Nanoparticle Research. 2012 Jul;14:1-5.

Surwase SA, Boetker JP, Saville D, Boyd BJ, Gordon KC, Peltonen L, Strachan CJ. Indomethacin: new polymorphs of an old drug. Mol Pharm. 2013 Dec 2;10(12):4472-80. doi: 10.1021/mp400299a. Epub 2013 Oct 30. PMID: 24025118.

Nigmatullin R, Lovitt R, Wright C, Linder M, Nakari-Setälä T, Gama M. Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids Surf B Biointerfaces. 2004 May 15;35(2):125-35. doi: 10.1016/j.colsurfb.2004.02.013. PMID: 15261045.

Wiley J. Principles and Applications of Thermal Analysis.DOI:10.1002/9780470697702

Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry. 1985 Jan 1;57(4):603-19.DOI:https://doi.org/10.1351/pac198557040603

Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006 Sep 14;321(1-2):1-11. doi: 10.1016/j.ijpharm.2006.07.011. Epub 2006 Jul 15. PMID: 16920290.

Kazakevich YV, Lobrutto R. HPLC for pharmaceutical scientists. John Wiley & Sons; 2007 Feb 16.doi:10.1002/0470087951.

Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. Journal of applied pharmaceutical science. 2012 Mar 30(Issue):129-38.doi: 10.7324/JAPS.2012.2322.

Stuhrmann HB. Small-angle scattering of X-rays. Progress in crystal growth and characterization. 1989 Jan 1;18:1-9.doi:https://doi.org/10.1016/0146-3535(89)90023-3.

Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Adv Drug Deliv Rev. 2015 Jul 15;89:3-20. doi: 10.1016/j.addr.2015.04.003. Epub 2015 Apr 11. PMID: 25868453.

Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011 Mar 15;406(1-2):145-52. doi: 10.1016/j.ijpharm.2010.12.027. Epub 2010 Dec 24. PMID: 21185926.

Tuomela A, Hirvonen J, Peltonen L. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability. Pharmaceutics. 2016 May 20;8(2):16. doi: 10.3390/pharmaceutics8020016. PMID: 27213435; PMCID: PMC4932479.

Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics. 2018 Aug 21;10(3):134. doi: 10.3390/pharmaceutics10030134. PMID: 30134537; PMCID: PMC6161002.

Cerdeira AM, Mazzotti M, Gander B. Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Int J Pharm. 2010 Aug 30;396(1-2):210-8. doi: 10.1016/j.ijpharm.2010.06.020. Epub 2010 Jun 19. PMID: 20600732.

Rachmawati H, Al Shaal L, Müller RH, Keck CM. Development of curcumin nanocrystal: physical aspects. J Pharm Sci. 2013 Jan;102(1):204-14. doi: 10.1002/jps.23335. Epub 2012 Oct 9. PMID: 23047816.

Elbakry A, Wurster EC, Zaky A, Liebl R, Schindler E, Bauer-Kreisel P, Blunk T, Rachel R, Goepferich A, Breunig M. Layer-by-layer coated gold nanoparticles: size-dependent delivery of DNA into cells. Small. 2012 Dec 21;8(24):3847-56. doi: 10.1002/smll.201201112. Epub 2012 Aug 22. PMID: 22911477.

Müller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002 Apr 26;237(1-2):151-61. doi: 10.1016/s0378-5173(02)00040-6. PMID: 11955813.

Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011 May 16;409(1-2):260-8. doi: 10.1016/j.ijpharm.2011.02.051. Epub 2011 Mar 1. PMID: 21371540.

Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release. 2014 Jun 10;183:51-66. doi: 10.1016/j.jconrel.2014.03.030. Epub 2014 Mar 23. PMID: 24667572.

Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B. 2016 Mar;6(2):106-13. doi: 10.1016/j.apsb.2015.11.005. Epub 2016 Jan 11. PMID: 27006893; PMCID: PMC4788714.

Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014 Sep 28;190:3-8. doi: 10.1016/j.jconrel.2014.03.054. Epub 2014 Apr 30. PMID: 24794901; PMCID: PMC4142099.

Chiang PC, Hu Y, Blom JD, Thompson DC. Evaluating the suitability of using rat models for preclinical efficacy and side effects with inhaled corticosteroids nanosuspension formulations. Nanoscale Res Lett. 2010 Apr 10;5(6):1010-9. doi: 10.1007/s11671-010-9597-y. PMID: 20672144; PMCID: PMC2893943.

Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010 Jun 15;392(1-2):1-19. doi: 10.1016/j.ijpharm.2010.03.017. Epub 2010 Mar 17. PMID: 20223286.

Patel A, Patel M, Yang X, Mitra AK. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21(11):1102-20. doi: 10.2174/0929866521666140807114240. PMID: 25106908; PMCID: PMC4407643.

Pireddu R, Caddeo C, Valenti D, Marongiu F, Scano A, Ennas G, Lai F, Fadda AM, Sinico C. Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Colloids Surf B Biointerfaces. 2016 Jul 1;143:64-70. doi: 10.1016/j.colsurfb.2016.03.026. Epub 2016 Mar 14. PMID: 26998867.

Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol. 2011 Sep;8(3):207-27. doi: 10.2174/157016311796799062. PMID: 21291409.

Patel MN, Lakkadwala S, Majrad MS, Injeti ER, Gollmer SM, Shah ZA, Boddu SH, Nesamony J. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique. AAPS PharmSciTech. 2014 Dec;15(6):1498-508. doi: 10.1208/s12249-014-0168-x. Epub 2014 Jul 18. PMID: 25035070; PMCID: PMC4245423.

Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016 Aug;6(4):399-413. doi: 10.1007/s13346-016-0292-0. PMID: 27165145.

Tuomela A, Liu P, Puranen J, Rönkkö S, Laaksonen T, Kalesnykas G, Oksala O, Ilkka J, Laru J, Järvinen K, Hirvonen J, Peltonen L. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm. 2014 Jun 5;467(1-2):34-41. doi: 10.1016/j.ijpharm.2014.03.048. Epub 2014 Mar 26. PMID: 24680962.

Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release. 2017 Feb 28;248:96-116. doi: 10.1016/j.jconrel.2017.01.012. Epub 2017 Jan 11. PMID: 28087407; PMCID: PMC5319397.

Yadollahi R, Vasilev K, Simovic S. Nanosuspension technologies for delivery of poorly soluble drugs. Journal of Nanomaterials. 2015;2015(1):216375.doi:https://doi.org/10.37285/ijpsn.2020.13.4.1.

Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013 Nov 28;172(1):12-21. doi: 10.1016/j.jconrel.2013.06.039. Epub 2013 Aug 3. PMID: 23920039; PMCID: PMC3886194.

Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018 Mar 1;127:46-57. doi: 10.1016/j.addr.2017.09.015. Epub 2017 Sep 20. PMID: 28939377; PMCID: PMC5860926.

Miao X, Yang W, Feng T, Lin J, Huang P. Drug nanocrystals for cancer therapy. Wiley Interdiscip Rev NanomedNanobiotechnol. 2018 May;10(3):e1499. doi: 10.1002/wnan.1499. Epub 2017 Oct 17. PMID: 29044971.

Cavalli R, Argenziano M, Vigna E, Giustetto P, Torres E, Aime S, Terreno E. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surf B Biointerfaces. 2015 May 1;129:39-46. doi: 10.1016/j.colsurfb.2015.03.023. Epub 2015 Mar 14. PMID: 25819364.

Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016 Oct;33(10):2373-87. doi: 10.1007/s11095-016-1958-5. Epub 2016 Jun 14. PMID: 27299311.

Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014 Jan 9;32(3):327-37. doi: 10.1016/j.vaccine.2013.11.069. Epub 2013 Dec 2. PMID: 24295808.

Cordeiro AS, Alonso MJ. Recent advances in vaccine delivery. Pharm Pat Anal. 2016;5(1):49-73. doi: 10.4155/ppa.15.38. Epub 2015 Dec 15. PMID: 26667309.

Simamora P, Alvarez JM, Yalkowsky SH. Solubilization of rapamycin. Int J Pharm. 2001 Feb 1;213(1-2):25-9. doi: 10.1016/s0378-5173(00)00617-7. PMID: 11165091.

Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K, Chen C, Thompson K, Higgins R, Batra U, Shelukar S, Kwei G, Storey D. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm. 2004 Nov 5;285(1-2):135-46. doi: 10.1016/j.ijpharm.2004.08.001. PMID: 15488686.

Fakes MG, Vakkalagadda BJ, Qian F, Desikan S, Gandhi RB, Lai C, Hsieh A, Franchini MK, Toale H, Brown J. Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm. 2009 Mar 31;370(1-2):167-74. doi: 10.1016/j.ijpharm.2008.11.018. Epub 2008 Nov 28. PMID: 19100319.

Citrome L. Paliperidone palmitate - review of the efficacy, safety and cost of a new second-generation depot antipsychotic medication. Int J Clin Pract. 2010 Jan;64(2):216-39. doi: 10.1111/j.1742-1241.2009.02240.x. Epub 2009 Nov 3. PMID: 19886879.

Sohn GK, Kwon GP, Bailey-Healy I, Mirza A, Sarin K, Oro A, Tang JY. Topical Itraconazole for the Treatment of Basal Cell Carcinoma in Patients With Basal Cell Nevus Syndrome or High-Frequency Basal Cell Carcinomas: A Phase 2, Open-Label, Placebo-Controlled Trial. JAMA Dermatol. 2019 Sep 1;155(9):1078-1080. doi: 10.1001/jamadermatol.2019.1541. PMID: 31339515; PMCID: PMC6659355.

Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011 Nov 25;420(1):1-10. doi: 10.1016/j.ijpharm.2011.08.032. Epub 2011 Aug 30. PMID: 21884771.

Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1866-79. doi: 10.1016/j.addr.2013.09.019. Epub 2013 Oct 10. PMID: 24120656; PMCID: PMC5812459.

Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle-mediated drug delivery. Journal of Drug Delivery Science and Technology. 2017 Oct 1;41:260-8.

Peltonen L, Hirvonen J. Drug nanocrystals - Versatile option for formulation of poorly soluble materials. Int J Pharm. 2018 Feb 15;537(1-2):73-83. doi: 10.1016/j.ijpharm.2017.12.005. Epub 2017 Dec 17. PMID: 29262301.

FDA. (2017). Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. Guidance for Industry. FDA-2010-D-0530

European Medicines Agency. (2015). Reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. EMA/CHMP/806058/2009/Rev. 02.

Tyner KM, Zou P, Yang X, Zhang H, Cruz CN, Lee SL. Product quality for nanomaterials: current U.S. experience and perspective. Wiley Interdiscip Rev NanomedNanobiotechnol. 2015 Sep-Oct;7(5):640-54. doi: 10.1002/wnan.1338. Epub 2015 Jan 30. PMID: 25641690.

Buckley ST, Frank KJ, Fricker G, Brandl M. Biopharmaceutical classification of poorly soluble drugs with respect to "enabling formulations". Eur J Pharm Sci. 2013 Sep 27;50(1):8-16. doi: 10.1016/j.ejps.2013.04.002. Epub 2013 Apr 11. PMID: 23583787.

Reflection paper on nanotechnology-based medicinal products for human use. European Medicines Agency, 2006.

Ehmann F, Sakai-Kato K, Duncan R, Hernán Pérez de la Ossa D, Pita R, Vidal JM, Kohli A, Tothfalusi L, Sanh A, Tinton S, Robert JL, Silva Lima B, Amati MP. Next-generation nanomedicines and nanosimilars: EU regulators' initiatives relating to the development and evaluation of nanomedicines. Nanomedicine (Lond). 2013 May;8(5):849-56. doi: 10.2217/nnm.13.68. PMID: 23656268.

International Council for Harmonisation. (2021). ICH Guidelines. Retrieved from https://www.ich.org/page/ich-guidelines

Colombo S, Cun D, Remaut K, Bunker M, Zhang J, Martin-Bertelsen B, Yaghmur A, Braeckmans K, Nielsen HM, Foged C. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles. J Control Release. 2015 Mar 10;201:22-31. doi: 10.1016/j.jconrel.2014.12.026. Epub 2014 Dec 23. PMID: 25540904.

Siewert M, Dressman J, Brown CK, Shah VP; FIP; AAPS. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):E7. doi: 10.1208/pt040107. PMID: 12916916; PMCID: PMC2750303.

Möschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004 Nov;58(3):615-9. doi: 10.1016/j.ejpb.2004.03.022. PMID: 15451536.

Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010 Jan;267(1):89-105. doi: 10.1111/j.1365-2796.2009.02187.x. PMID: 20059646.

International Pharmaceutical Regulators Programme. (2021). Nanomedicines Working Group. Retrieved from https://www.iprp.global/working-group/nanomedicines

International Organization for Standardization. (2021). ISO/TC 229 Nanotechnologies. Retrieved from https://www.iso.org/committee/381983.html

Ventola CL. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P T. 2017 Dec;42(12):742-755. PMID: 29234213; PMCID: PMC5720487.

Keck CM, Müller RH. Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm. 2013 Aug;84(3):445-8. doi: 10.1016/j.ejpb.2013.01.001. Epub 2013 Jan 16. PMID: 23333302.

Müller RH, Keck CM. Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm. 2012 Jan;80(1):1-3. doi: 10.1016/j.ejpb.2011.09.012. Epub 2011 Sep 28. PMID: 21971369.

Chin WW, Parmentier J, Widzinski M, Tan EH, Gokhale R. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci. 2014 Oct;103(10):2980-99. doi: 10.1002/jps.24098. Epub 2014 Aug 6. PMID: 25099918.

Plakkot S, de Matas M, York P, Saunders M, Sulaiman B. Comminution of ibuprofen to produce nano-particles for rapid dissolution. Int J Pharm. 2011 Aug 30;415(1-2):307-14. doi: 10.1016/j.ijpharm.2011.06.002. Epub 2011 Jun 12. PMID: 21683776.

Kakran M, Shegokar R, Sahoo NG, Shaal LA, Li L, Müller RH. Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm. 2012 Jan;80(1):113-21. doi: 10.1016/j.ejpb.2011.08.006. Epub 2011 Aug 28. PMID: 21896330.

Sarnes A, Kovalainen M, Häkkinen MR, Laaksonen T, Laru J, Kiesvaara J, Ilkka J, Oksala O, Rönkkö S, Järvinen K, Hirvonen J, Peltonen L. Nanocrystal-based per-oral itraconazole delivery: superior in vitro dissolution enhancement versus Sporanox® is not realized in in vivo drug absorption. J Control Release. 2014 Apr 28;180:109-16. doi: 10.1016/j.jconrel.2014.02.016. Epub 2014 Feb 22. PMID: 24566254.

Shah DA, Murdande SB, Dave RH. A Review: Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions. J Pharm Sci. 2016 Jan;105(1):10-24. doi: 10.1002/jps.24694. Epub 2016 Jan 13. PMID: 26580860.

Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008 Oct;25(10):2302-8. doi: 10.1007/s11095-008-9625-0. Epub 2008 May 29. PMID: 18509597.

Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005 Jul;113(7):823-39. doi: 10.1289/ehp.7339. Erratum in: Environ Health Perspect. 2010 Sep;118(9):A380. PMID: 16002369; PMCID: PMC1257642.

Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006 Feb 3;311(5761):622-7. doi: 10.1126/science.1114397. PMID: 16456071.

Fadeel B, Fornara A, Toprak MS, Bhattacharya K. Keeping it real: The importance of material characterization in nanotoxicology. BiochemBiophys Res Commun. 2015 Dec 18;468(3):498-503. doi: 10.1016/j.bbrc.2015.06.178. Epub 2015 Jul 15. PMID: 26187673.

Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. 2012 Apr 11;112(4):2323-38. doi: 10.1021/cr2002596. Epub 2011 Dec 30. PMID: 22216932.

Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, McCall MJ. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology. 2013 Nov 8;313(1):15-23. doi: 10.1016/j.tox.2012.11.005. Epub 2012 Nov 16. PMID: 23165187.

Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A, Lynch I, Valsami-Jones E, Alenius H, Savolainen K. Advanced tools for the safety assessment of nanomaterials. Nat Nanotechnol. 2018 Jul;13(7):537-543. doi: 10.1038/s41565-018-0185-0. Epub 2018 Jul 6. PMID: 29980781.

Sainz V, Conniot J, Matos AI, Peres C, Zupancic E, Moura L, Silva LC, Florindo HF, Gaspar RS. Regulatory aspects on nanomedicines. BiochemBiophys Res Commun. 2015 Dec 18;468(3):504-10. doi: 10.1016/j.bbrc.2015.08.023. Epub 2015 Aug 8. PMID: 26260323.

Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011 Jul 30;153(2):106-16. doi: 10.1016/j.jconrel.2011.01.027. Epub 2011 Feb 4. PMID: 21300115.

Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014 Mar 26;4(6):660-77. doi: 10.7150/thno.8698. PMID: 24723986; PMCID: PMC3982135.

Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017 Jan 1;108:39-50. doi: 10.1016/j.addr.2016.03.001. Epub 2016 Mar 18. PMID: 27001902.

Patel M, Joshi G, Sawant KK. Nanotechnology in oral drug delivery: Salient aspects, state of art, and applications. Functional Bionanomaterials: From Biomolecules to Nanoparticles. 2020:165-84.

Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013 Nov;12(11):991-1003. doi: 10.1038/nmat3776. PMID: 24150417.

Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019-31. doi: 10.3109/03639045.2015.1120743. Epub 2015 Dec 13. PMID: 26625986.

Saritha D, Chandra Bose PS, Osmani RA, Iriventi P. DEVELOPMENT, OPTIMIZATION AND IN VITRO CHARACTERIZATION OF HALOPERIDOL NANOCRYSTALS USING 3 2 FACTORIAL DESIGN. International Journal of Applied Pharmaceutics. 2024;16(3):187.

ABDELLATIF MM, AHMED SM, EL-NABARAWI MA, TEAIMA M. NANO-DELIVERY SYSTEMS FOR ENHANCING ORAL BIOAVAILABILITY OF DRUGS. Int J App Pharm. 2023;15(1):13-9.

Published

24-09-2024

How to Cite

SIVANATHAN, G., RAJAGOPAL, S., MAHADEVASWAMY, G. ., ANGAMUTHU, G., & DHANDAPANI, N. V. (2024). PHARMACEUTICAL NANOCRYSTALS: AN EXTENSIVE OVERVIEW. International Journal of Applied Pharmaceutics, 16(6). https://doi.org/10.22159/ijap.2024v16i6.52257

Issue

Section

Review Article(s)