FABRICATION AND CHARACTERIZATION OF DISSOLVING MICRONEEDLE PATCH USING 3D PRINTED MASTER

Authors

  • SHRADDHA GUPTA Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India https://orcid.org/0000-0002-6827-7271
  • DHAKSHINAMOORTHY VASANTH Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India https://orcid.org/0000-0002-8522-7890
  • AWANISH KUMAR Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India

DOI:

https://doi.org/10.22159/ijap.2024v16i6.52314

Keywords:

Chitosan oligosaccharide, Polyvinyl alcohol, Dissolving microneedles, Characterization, Biopolymer

Abstract

Objective: The purpose of this study was to fabricate a dissolving microneedle patch using a 3D-printed master and characterize it using various techniques.

Methods: Dissolving microneedle patches were developed using Computer-Aided Design (CAD) software and 3D printing. Polydimethylsiloxane (PDMS) reverse molds were cast from the 3D-printed masters and filled with a solution of 20% Chitosan Oligosaccharide (COS) and 20% Polyvinyl Alcohol (PVA). The patches were dried at room temperature and characterized using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and in vitro skin penetration studies.

Results: Optical microscopy and SEM images showed the formation of a uniform microneedle. The peak at 1248 cm⁻¹ in the ATR-FTIR spectrum indicates the formation of cross-links between certain PVA radical groups and COS. XRD revealed that both polymers blended well and showed partial crystallinity, with peaks at 2θ = 11.39°, 2θ = 20°, and 2θ = 41°. DSC and TGA analyses revealed that the blend could withstand high temperatures with good stability at temperatures up to 200 °C. In vitro skin penetration studies confirmed that microneedles could successfully penetrate the skin, indicating their potential for effective transdermal drug delivery.

Conclusion: This study demonstrated that COS/PVA dissolving microneedles fabricated using 3D printing and micro-molding have significant potential for transdermal drug delivery.

Downloads

Download data is not yet available.

References

Sekar L, Seenivasan R, Reddy MV, Varma KD, Ahmed SS, Pachiyappan JK. Advancements in microneedle technology: comprehensive insights into versatile drug delivery mechanisms. Int J App Pharm. 2024;16(2):1-11. doi: 10.22159/ijap.2024v16i2.49564.

Ita K. Transdermal delivery of drugs with microneedles potential and challenges. Pharmaceutics. 2015;7(3):90-105. doi: 10.3390/pharmaceutics7030090, PMID 26131647.

Manoj VR, Manoj H. Review on transdermal microneedle-based drug delivery. Asian J Pharm Clin Res. 2019;12(1):18-29. doi: 10.22159/ajpcr.2019.v12i1.27434.

Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24(7):585-94. doi: 10.1097/AJP.0b013e31816778f9, PMID 18716497.

Chen W, Wang C, Yan L, Huang L, Zhu X, Chen B. Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin. J Mater Chem B. 2014;2(12):1699-705. doi: 10.1039/c3tb21698e, PMID 32261399.

Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics. 2015;7(4):379-96. doi: 10.3390/pharmaceutics7040379, PMID 26426039.

Chong RH, Gonzalez Gonzalez E, Lara MF, Speaker TJ, Contag CH, Kaspar RL. Gene silencing following sirna delivery to skin via coated steel microneedles: in vitro and in vivo proof of concept. J Control Release. 2013;166(3):211-9. doi: 10.1016/j.jconrel.2012.12.030, PMID 23313112.

Jun H, Han MR, Kang NG, Park JH, Park JH. Use of hollow microneedles for targeted delivery of phenylephrine to treat fecal incontinence. J Control Release. 2015 Jun 10;207:1-6. doi: 10.1016/j.jconrel.2015.03.031, PMID 25828366.

Caffarel Salvador E, Tuan Mahmood TM, McElnay JC, McCarthy HO, Mooney K, Woolfson AD. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489(1-2):158-69. doi: 10.1016/j.ijpharm.2015.04.076, PMID 25940042.

Cole G, McCaffrey J, Ali AA, McBride JW, McCrudden CM, Vincente Perez EM. Dissolving microneedles for DNA vaccination: improving functionality via polymer characterization and Rala complexation. Hum Vaccin Immunother. 2017;13(1):50-62. doi: 10.1080/21645515.2016.1248008, PMID 27846370.

Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113-24. doi: 10.1016/j.biomaterials.2007.12.048.

Tiwari A, Sharma S, Soni PK, Paswan SK. Fabrication and development of dissolving microneedle patch of butorphanol tartrate. Int J App Pharm. 2023;15(3):261-71, doi: 10.22159/ijap.2023v15i3.47411.

Rajabi M, Roxhed N, Shafagh RZ, Haraldson T, Fischer AC, Wijngaart WV. Flexible and stretchable microneedle patches with integrated rigid stainless steel microneedles for transdermal biointerfacing. PLOS ONE. 2016;11(12):e0166330. doi: 10.1371/journal.pone.0166330, PMID 27935976.

Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68. doi: 10.1016/j.addr.2012.04.005, PMID 22575858.

Qiu Y, LI C, Zhang S, Yang G, HE M, Gao Y. Systemic delivery of artemether by dissolving microneedles. Int J Pharm. 2016;508(1-2):1-9. doi: 10.1016/j.ijpharm.2016.05.006, PMID 27150946.

Wang Q, Yao G, Dong P, Gong Z, LI G, Zhang K. Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution. Eur J Pharm Sci. 2015;66:148-56. doi: 10.1016/j.ejps.2014.09.011, PMID 25446513.

Yao G, Quan G, Lin S, Peng T, Wang Q, Ran H. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: in vitro and in vivo characterization. Int J Pharm. 2017;534(1-2):378-86. doi: 10.1016/j.ijpharm.2017.10.035, PMID 29051119.

Zhang Q, XU C, Lin S, Zhou H, Yao G, Liu H. Synergistic immunoreaction of acupuncture-like dissolving microneedles containing thymopentin at acupoints in immune suppressed rats. Acta Pharm Sin B. 2018;8(3):449-57. doi: 10.1016/j.apsb.2017.12.006.

Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116-27. doi: 10.1016/j.biopha.2017.07.019, PMID 28738520.

Gou M, Qu X, Zhu W, Xiang M, Yang J, Zhang K, et al. Bio-inspired detoxification using 3d-printed hydrogel nanocomposites. Nat Commun. 2014;5(1):3774. doi: 10.1038/ncomms4774, PMID 24805923.

Zhang J, Chen Y, Huang Y, WU W, Deng X, Liu H. A 3d‐printed self‐adhesive bandage with drug release for peripheral nerve repair. Adv Sci (Weinh). 2020;7(23):2002601. doi: 10.1002/advs.202002601, PMID 33304766.

Kuril A, Ambekar A, Nimase B, Giri P, Nikam P, Desai H. Exploring the potential of 3d printing in pharmaceutical development. Int J Curr Pharm Sci. 2023;15(6):31-42. doi: 10.22159/ijcpr.2023v15i6.3085.

Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect-ratio microneedle molds using low-cost 3d printing. Microsyst Nanoeng. 2019;5(1):31645996. doi: 10.1038/s41378-019-0088-8.

Lee S, Wajahat M, Kim JH, Pyo J, Chang WS, Cho SH. Electroless deposition-assisted 3d printing of micro circuitries for structural electronics. ACS Appl Mater Interfaces. 2019;11(7):7123-30. doi: 10.1021/acsami.8b18199, PMID 30681321.

Istock, Getty images. Canada. Available from. https://www.istockphoto.com/search/2/image-ffilm?family=creativeandphrase=skin%20anatomy [Last accessed on 08 Oct 2024]

BioRender. Biorender. Canada. Available from: https://app.com/illustrations/65951fe379282c9642903da2. [Last accessed on 08 Oct 2024]

HE J, Zhang Z, Zheng X, LI L, QI J, WU W. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics. 2021;13(4):33921712. doi: 10.3390/pharmaceutics13040579, PMID 33921712.

Johnson AR, Procopio AT. Low cost additive manufacturing of microneedle masters. 3D Print Med. 2019;5(1):2. doi: 10.1186/s41205-019-0039-x, PMID 30715677.

TU KT, Chung CK. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding. J Micromech Microeng. 2016;26(6):065015. doi: 10.1088/0960-1317/26/6/065015.

Dillon C, Hughes H, O’Reilly NJ, McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int J Pharm. 2017;526(1-2):125-36. doi: 10.1016/j.ijpharm.2017.04.066, PMID: 28461268.

Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D. Poly (vinyl alcohol) microneedles: fabrication characterization and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88-103. doi: 10.1016/j.ejpb.2018.05.017, PMID 29800617.

Monkare J, Reza Nejadnik MR, Baccouche K, Romeijn S, Jiskoot W, Bouwstra JA. Igg-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J Control Release. 2015;218:53-62. doi: 10.1016/j.jconrel.2015.10.002, PMID 26437262.

Bhadale RS, Londhe VY. Inclusion complexed iloperidone loaded dissolving microneedles: characterization in vitro study and dermatopharmacokinetics. J Drug Deliv Sci Technol. 2022 Feb;68:103063. doi: 10.1016/j.jddst.2021.103063.

Gugulothu D, Choudhary SK. Design and in vitro evaluation of floating drug delivery system of glipizide using combination of natural mucilages and synthetic polymers. Int J Pharm Pharm Sci. 2021;13:40-8. doi: 10.22159/ijpps.2021v13i7.41644.

Pervez S, Nasir F, Hidayatullah T, Khattak MA, Alasmari F, Zainab SR. Transdermal delivery of glimepiride: a novel approach using nanomicelle embedded microneedles. Pharmaceutics. 2023;15(8):37631233. doi: 10.3390/pharmaceutics15082019, PMID 37631233.

Farooqui P, Gude R. Formulation development and optimisation of fast dissolving buccal films loaded glimepiride solid dispersion with enhanced dissolution profile using central composite design. Int J Pharm Pharm Sci. 2023;15(6):35-54. doi: 10.22159/ijpps.2023v15i6.47992.

Scypinski S. Editorial: 2021 the year of returning to normalcy hopefully. J Pharm Innov. 2021;16(1):1. doi: 10.1007/s12247-021-09545-6, PMID 33680214.

Aldawood FK, Parupelli SK, Andar A, Desai S. 3D printing of biodegradable polymeric microneedles for transdermal drug delivery applications. Pharmaceutics. 2024;16(2):237. doi: 10.3390/pharmaceutics16020237, PMID 38399291.

Yue L, Zheng M, Wang M, Khan IM, Wang B, MA X. A general strategy to synthesis chitosan oligosaccharide-O-terpineol derivatives with antibacterial properties. Carbohydr Res. 2021;503:108315. doi: 10.1016/j.carres.2021.108315, PMID 33865180.

Yue L, LI J, Chen W, Liu X, Jiang Q, Xia W. Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydr Polym. 2017;176:356-64. doi: 10.1016/j.carbpol.2017.07.043.

Saadiah MA, Zhang D, Nagao Y, Muzakir SK, Samsudin AS. Reducing crystallinity on thin film-based Cmc/Pva hybrid polymer for application as a host in polymer electrolytes. J Non-Crystal Solids. 2019;511:201-11. doi: 10.1016/j.jnoncrysol.2018.11.032.

Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2-11. doi: 10.4103/2230-973X.96920, PMID 23071954.

Mondal N. The role of matrix tablet in drug delivery system. Int J App Pharm. 2018;10(1):1-6. doi: 10.22159//ijap.2018v10i1.21935.

HE MC, Chen BZ, Ashfaq M, Guo XD. Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery. Drug Deliv Transl Res. 2018;8(5):1034-42. doi: 10.1007/s13346-018-0547-z, PMID 29845379.

Mourya VK, Inamdar NN, Choudhari YM. Chitooligosaccharides: synthesis characterization and applications. Polym Sci Ser A. 2011;53(7):583-612. doi: 10.1134/S0965545X11070066.

Jia X, LI Y, Zhang B, Cheng Q, Zhang S. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization. Mater Res Bull. 2008;43(3):611-7. doi: 10.1016/j.materresbull.2007.04.008.

Gupta S, Pramanik AK, Kailath A, Mishra T, Guha A, Nayar S. Composition-dependent structural modulations in transparent poly(vinyl alcohol) hydrogels. Colloids Surf B Biointerfaces. 2009;74(1):186-90. doi: 10.1016/j.colsurfb.2009.07.015, PMID: 19700267.

Pandele AM, Ionita M, Crica L, Dinescu S, Costache M, Iovu H. Synthesis characterization and in vitro studies of graphene oxide/chitosan polyvinyl alcohol films. Carbohydr Polym. 2014;102:813-20. doi: 10.1016/j.carbpol.2013.10.085, PMID 24507351.

Aziz SB. Modifying poly(vinyl alcohol) (pva) from insulator to small bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater. 2016;45(1):736-45. doi: 10.1007/s11664-015-4191-9.

Abdullah OG, Saleem SA. Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly(vinyl alcohol) films. J Electron Mater. 2016;45(11):5910-20. doi: 10.1007/s11664-016-4797-6.

Abdullah OG, Aziz SB, Rasheed MA. Structural and optical characterization of PVA:KMnO 4 based solid polymer electrolyte. Results Phys. 2016;6:1103-8. doi: 10.1016/j.rinp.2016.11.050.

Lee HW, Karim MR, Park JH, Ghim HD, Choi JH, Kim K. Poly(vinyl alcohol)/chitosan oligosaccharide blend submicrometer fibers prepared from aqueous solutions by the electrospinning method. J Appl Polym Sci. 2009;111(1):132-40. doi: 10.1002/app.29033.

Bach F, Staufenbiel S, Bodmeier R. Implications of changes in physical state of drugs in poly(Lactide-Co-Glycolide) matrices upon exposure to moisture and release medium. J Drug Deliv Sci Technol. 2023;80:104115. doi: 10.1016/j.jddst.2022.104115.

Ren M, Frimmel FH, Abbt Braun G. Multi cycle photocatalytic degradation of bezafibrate by a cast polyvinyl alcohol/titanium dioxide (Pva/Tio2) hybrid film. J Mol Cat A Chem. 2015 May 1;400:42-8. doi: 10.1016/j.molcata.2015.02.004.

Zor M, Sen F, Candan Z, Ivanov E, Batakliev T, Georgiev V. Preparation and characterization of polyvinyl alcohol (Pva)/carbonized waste rubber biocomposite films. Polymers. 2024;16(8):38674970. doi: 10.3390/polym16081050, PMID 38674970.

Abitbol T, Johnstone T, Quinn TM, Gray DG. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter. 2011;7(6):2373-9. doi: 10.1039/C0SM01172J.

Appunni S, Rajesh MP, Prabhakar S. Nitrate decontamination through functionalized chitosan in brackish water. Carbohydr Polym. 2016 Aug 20;147:525-32. doi: 10.1016/j.carbpol.2016.03.075.

Published

07-11-2024

How to Cite

GUPTA, S., VASANTH, D., & KUMAR, A. (2024). FABRICATION AND CHARACTERIZATION OF DISSOLVING MICRONEEDLE PATCH USING 3D PRINTED MASTER. International Journal of Applied Pharmaceutics, 16(6), 182–189. https://doi.org/10.22159/ijap.2024v16i6.52314

Issue

Section

Original Article(s)