FABRICATION AND CHARACTERIZATION OF DISSOLVING MICRONEEDLE PATCH USING 3D PRINTED MASTER

Authors

  • SHRADDHA GUPTA Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India https://orcid.org/0000-0002-6827-7271
  • DHAKSHINAMOORTHY VASANTH Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India https://orcid.org/0000-0002-8522-7890
  • AWANISH KUMAR Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India

DOI:

https://doi.org/10.22159/ijap.2024v16i6.52314

Keywords:

Chitosan oligosaccharide, Polyvinyl alcohol, Dissolving microneedles, Characterization, Biopolymer

Abstract

Objective: The purpose of this study was to fabricate a dissolving microneedle patch using a 3D printed master and characterize it using various techniques.

Methods: Dissolving microneedle patches were developed using Computer-Aided Design (CAD) software and 3D printing. Polydimethylsiloxane (PDMS) reverse molds were cast from the 3D-printed masters and filled with a solution of 20% Chitosan Oligosaccharide (COS) and 20% Polyvinyl Alcohol (PVA). The patches were dried at room temperature and characterized using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and in vitro skin penetration studies.


Results: Optical microscopy and SEM images showed the formation of a uniform microneedle. The peak at 1248 cm⁻¹ in the ATR-FTIR spectrum indicates the formation of cross-links between certain PVA radical groups and COS. XRD revealed that both polymers blended well and showed partial crystallinity, with peaks at 2θ = 11.39°, 2θ = 20°, and 2θ = 41°.  DSC and TGA analyses revealed that the blend could withstand high temperatures with good stability at temperatures up to 200°C. In vitro skin penetration studies confirmed that microneedles could successfully penetrate the skin, indicating their potential for effective transdermal drug delivery.

Conclusion: This study demonstrated that COS/PVA dissolving microneedles fabricated using 3D printing and micromolding have significant potential for transdermal drug delivery.

Downloads

Download data is not yet available.

References

Sekar L, Seenivasan R, Reddy MV, Varma KD, Suhaib S, Ahmed JKP, et al. Advancements in Microneedle Technology: Comprehensive Insights into Versatile Drug Delivery Mechanisms. Int J App Pharm. 2024;16(2):1-11.doi: https://dx.doi.org/10.22159/ijap.2024v16i2.49564

Ita K. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges. Pharmaceutics. 2015;7(3):90-105. doi: https://doi.org/10.3390/pharmaceutics7030090PMID: 26131647

Manoj VR, Manoj H. Review on Transdermal Microneedle-Based Drug Delivery. Asian J Pharm Clin Res. 2019;12(1):18-29. doi: http://dx.doi.org/10.22159/ajpcr.2019.v12i1.27434

Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of Microneedle Design on Pain in Human Volunteers. The Clinical journal of pain. 2008;24(7):585-94. doi: 10.1097/AJP.0b013e31816778f9PMID: 18716497

Chen W, Wang C, Yan L, Huang L, Zhu X, Chen B, et al. Improved Polyvinylpyrrolidone Microneedle Arrays with Non-Stoichiometric Cyclodextrin. Journal of Materials Chemistry B. 2014;2(12):1699-705.doi: https://doi.org/10.1039/C3TB21698EPMID: 32261399

Hoang MT, Ita KB, Bair DA. Solid Microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride. Pharmaceutics. 2015;7(4):379-96. doi:https://doi.org/10.3390/pharmaceutics7040379PMID: 26426039

Chong RH, Gonzalez-Gonzalez E, Lara MF, Speaker TJ, Contag CH, Kaspar RL, et al. Gene Silencing Following Sirna Delivery to Skin Via Coated Steel Microneedles: In Vitro and in Vivo Proof-of-Concept. Journal of Controlled Release. 2013;166(3):211-9. doi:https://doi.org/10.1016/j.jconrel.2012.12.030PMID: 23313112

Jun H, Han M-R, Kang N-G, Park J-H, Park JH. Use of Hollow Microneedles for Targeted Delivery of Phenylephrine to Treat Fecal Incontinence. Journal of Controlled Release. 2015;207:1-6.https://doi.org/10.1016/j.jconrel.2015.03.03PMID: 25828366

Caffarel-Salvador E, Tuan-Mahmood T-M, McElnay JC, McCarthy HO, Mooney K, Woolfson AD, et al. Potential of Hydrogel-Forming and Dissolving Microneedles for Use in Paediatric Populations. International journal of pharmaceutics. 2015;489(1-2):158-69. doi:https://doi.org/10.1016/j.ijpharm.2015.04.07PMID: 25940042

Cole G, McCaffrey J, Ali AA, McBride JW, McCrudden CM, Vincente-Perez EM, et al. Dissolving Microneedles for DNA Vaccination: Improving Functionality Via Polymer Characterization and Rala Complexation. Human Vaccines & Immunotherapeutics. 2017;13(1):50-62. doi:https://doi.org/10.1080/21645515.2016.1248008PMID: 27846370

Lee JW, Park J-H, Prausnitz MR. Dissolving Microneedles for Transdermal Drug Delivery. Biomaterials. 2008;29(13):2113-24. doi: https://doi.org/10.1016/j.biomaterials.2007.12.048

Tiwari A, Sharma S, Soni PK, Paswan SK. Fabrication and Development of Dissolving Microneedle Patch of Butorphanol Tartrate. Int J App Pharm. 2023;15(3):261-71doi: https://dx.doi.org/10.22159/ijap.2023v15i3.47411.

Rajabi M, Roxhed N, Shafagh RZ, Haraldson T, Fischer AC, Wijngaart Wvd, et al. Flexible and Stretchable Microneedle Patches with Integrated Rigid Stainless Steel Microneedles for Transdermal Biointerfacing. PloS one. 2016;11(12):e0166330. doi: https://doi.org/10.1371/journal.pone.0166330 PMID: 2793597

Kim Y-C, Park J-H, Prausnitz MR. Microneedles for Drug and Vaccine Delivery. Advanced drug delivery reviews. 2012;64(14):1547-68.doi: https://doi.org/10.1016/j.addr.2012.04.005PMID: 22575858

Qiu Y, Li C, Zhang S, Yang G, He M, Gao Y. Systemic Delivery of Artemether by Dissolving Microneedles. International Journal of Pharmaceutics. 2016;508(1-2):1-9.doi: https://doi.org/10.1016/j.ijpharm.2016.05.006PMID: 27150946

Wang Q, Yao G, Dong P, Gong Z, Li G, Zhang K, et al. Investigation on Fabrication Process of Dissolving Microneedle Arrays to Improve Effective Needle Drug Distribution. European Journal of Pharmaceutical Sciences. 2015;66:148-56. doi: https://doi.org/10.1016/j.ejps.2014.09.01PMID: 2544651

Yao G, Quan G, Lin S, Peng T, Wang Q, Ran H, et al. Novel Dissolving Microneedles for Enhanced Transdermal Delivery of Levonorgestrel: In Vitro and in Vivo Characterization. International Journal of Pharmaceutics. 2017;534(1-2):378-86. doi: https://doi.org/10.1016/j.ijpharm.2017.10.035PMID: 29051119

Zhang Q, Xu C, Lin S, Zhou H, Yao G, Liu H, et al. Synergistic Immunoreaction of Acupuncture-Like Dissolving Microneedles Containing Thymopentin at Acupoints in Immune-Suppressed Rats. Acta pharmaceutica sinica B. 2018;8(3):449-57. doi: 10.1016/j.apsb.2017.12.006PMID: 29881684

Ita K. Dissolving Microneedles for Transdermal Drug Delivery: Advances and Challenges. Biomedicine & Pharmacotherapy. 2017;93:1116-27.doi: 10.1016/j.biopha.2017.07.019PMID: 28738520

Gou M, Qu X, Zhu W, Xiang M, Yang J, Zhang K, et al. Bio-Inspired Detoxification Using 3d-Printed Hydrogel Nanocomposites. Nature communications. 2014;5(1):3774. doi: 10.1038/ncomms4774PMID: 24805923

Zhang J, Chen Y, Huang Y, Wu W, Deng X, Liu H, et al. A 3d‐Printed Self‐Adhesive Bandage with Drug Release for Peripheral Nerve Repair. Advanced Science. 2020;7(23):2002601. doi: 10.1002/advs.202002601PMID: 33304766

Kuril A, Ambekar A, Nimase B, Giri P, Nikam P, Desai H, Aher S. Exploring the Potential of 3d Printing in Pharmaceutical Development. international journal of current pharmaceutical research. 2023;15(6):31-42.doi: 10.22159/ijcpr.2023v15i6.3085

Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and Customizable Method for Fabrication of High-Aspect Ratio Microneedle Molds Using Low-Cost 3d Printing. Microsystems & nanoengineering. 2019;5(1):42. doi: 10.1038/s41378-019-0088-8PMID: 31645996

Lee S, Wajahat M, Kim JH, Pyo J, Chang WS, Cho SH, et al. Electroless Deposition-Assisted 3d Printing of Micro Circuitries for Structural Electronics. ACS applied materials & interfaces. 2019;11(7):7123-30.doi: 10.1021/acsami.8b18199PMID: 30681321

iStock, Getty Images [Internet], Canada. Available from: https://www.istockphoto.com/search/2/image-ffilm?family=creative&phrase=skin%20anatomy

BioRender [Internet], Canada. Available from: https://app.biorender.com/illustrations/65951fe379282c9642903da2

He J, Zhang Z, Zheng X, Li L, Qi J, Wu W, et al. Design and Evaluation of Dissolving Microneedles for Enhanced Dermal Delivery of Propranolol Hydrochloride. Pharmaceutics. 2021;13(4):579.doi: 10.3390/pharmaceutics13040579PMID: 33921712

Johnson AR, Procopio AT. Low Cost Additive Manufacturing of Microneedle Masters. 3D printing in medicine. 2019;5:1-10.doi: 10.1186/s41205-019-0039-xPMID: 3071567

Tu K, Chung C. Rapid Prototyping of Biodegradable Microneedle Arrays by Integrating Co2 Laser Processing and Polymer Molding. Journal of Micromechanics and Microengineering. 2016;26(6):065015.Doi:10.1088/0960-1317/26/6/065015

Dillon C, Hughes H, O’Reilly NJ, McLoughlin P. Formulation and Characterisation of Dissolving Microneedles for the Transdermal Delivery of Therapeutic Peptides. International Journal of Pharmaceutics. 2017;526(1-2):125-36.doi: 10.1016/j.ijpharm.2017.04.066PMID: 28461268

Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, et al. Poly (Vinyl Alcohol) Microneedles: Fabrication, Characterization, and Application for Transdermal Drug Delivery of Doxorubicin. European journal of pharmaceutics and biopharmaceutics. 2018;129:88-103.doi: 10.1016/j.ejpb.2018.05.017PMID: 29800617

Mönkäre J, Nejadnik MR, Baccouche K, Romeijn S, Jiskoot W, Bouwstra JA. Igg-Loaded Hyaluronan-Based Dissolving Microneedles for Intradermal Protein Delivery. Journal of controlled release. 2015;218:53-62.doi: 10.1016/j.jconrel.2015.10.002PMID: 26437262

Bhadale RS, Londhe VY. Inclusion Complexed Iloperidone Loaded Dissolving Microneedles: Characterization, in-Vitro Study, and Dermatopharmacokinetics. Journal of Drug Delivery Science and Technology. 2022;68:103063.doi: https://doi.org/10.1016/j.jddst.2021.103063

Gugulothu D, Choudhary SK. Design and in Vitro Evaluation of Floating Drug Delivery System of Glipizide Using Combination of Natural Mucilages and Synthetic Polymers. Int J Pharm Pharm Sci. 2021;13:40-8.doi: https://dx.doi.org/10.22159/ijpps.2021v13i7.41644

Pervez S, Nasir F, Hidayatullah T, Khattak MA, Alasmari F, Zainab SR, et al. Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles. Pharmaceutics. 2023;15(8):2019.doi: 10.3390/pharmaceutics15082019PMID: 37631233

Farooqui P, Gude R. Formulation Development and Optimisation of Fast Dissolving Buccal Films Loaded Glimepiride Solid Dispersion with Enhanced Dissolution Profile Using Central Composite Design. Int J Pharm Pharm Sci. 2023;15(6):35-54.doi: https://dx.doi.org/10.22159/ijpps.2023v15i6.47992

Putri HE, Utami RN, Aliyah, Wahyudin E, Oktaviani WW, Mudjahid M, et al. Dissolving Microneedle Formulation of Ceftriaxone: Effect of Polymer Concentrations on Characterisation and Ex Vivo Permeation Study. Journal of Pharmaceutical Innovation. 2021:1-13. doi: https://doi.org/10.1007/s12247-021-09593-y

Aldawood FK, Parupelli SK, Andar A, Desai S. 3d Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications. Pharmaceutics. 2024;16(2):237.doi: 10.3390/pharmaceutics16020237PMID: 38399291

Yue L, Zheng M, Wang M, Khan IM, Wang B, Ma X, et al. A General Strategy to Synthesis Chitosan Oligosaccharide -O-Terpenol Derivatives with Antibacterial Properties. Carbohydrate Research. 2021;503:108315.doi: 10.1016/j.carres.2021.108315PMID: 33865180

Yue L, Li J, Chen W, Liu X, Jiang Q, Xia W. Geraniol Grafted Chitosan Oligosaccharide as a Potential Antibacterial Agent. Carbohydrate polymers. 2017;176:356-64.doi: 10.1016/j.carbpol.2017.07.043PMID: 2892761

Saadiah M, Zhang D, Nagao Y, Muzakir S, Samsudin A. Reducing Crystallinity on Thin Film Based Cmc/Pva Hybrid Polymer for Application as a Host in Polymer Electrolytes. Journal of Non-Crystalline Solids. 2019;511:201-11. doi: https://doi.org/10.1016/j.jnoncrysol.2018.11.032

Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug Delivery Systems: An Updated Review. International journal of pharmaceutical investigation. 2012;2(1):2.doi: 10.4103/2230-973X.96920PMID: 23071954

Mondal N. The Role of Matrix Tablet in Drug Delivery System. Int J App Pharm. 2018;10(1):1-6. doi: http://dx.doi.org/10.22159/ijap.2018v10i1.21935

He MC, Chen BZ, Ashfaq M, Guo XD. Assessment of Mechanical Stability of Rapidly Separating Microneedles for Transdermal Drug Delivery. Drug delivery and translational research. 2018;8:1034-42.doi: 10.1007/s13346-018-0547-zPMID: 29845379

Mourya V, Inamdar N, Choudhari YM. Chitooligosaccharides: Synthesis, Characterization and Applications. Polymer Science Series A. 2011;53(7):583-612. doi: https://doi.org/10.1134/S0965545X11070066

Jia X, Li Y, Zhang B, Cheng Q, Zhang S. Preparation of Poly (Vinyl Alcohol)/Kaolinite Nanocomposites Via in Situ Polymerization. Materials Research Bulletin. 2008;43(3):611-7.https://doi.org/10.1016/j.materresbull.2007.04.008

Gupta S, Pramanik AK, Kailath A, Mishra T, Guha A, Nayar S, et al. Composition Dependent Structural Modulations in Transparent Poly (Vinyl Alcohol) Hydrogels. Colloids and Surfaces B: Biointerfaces. 2009;74(1):186-90.doi: 10.1016/j.colsurfb.2009.07.015PMID: 19700267

Pandele AM, Ionita M, Crica L, Dinescu S, Costache M, Iovu H. Synthesis, Characterization, and in Vitro Studies of Graphene Oxide/Chitosan–Polyvinyl Alcohol Films. Carbohydrate polymers. 2014;102:813-20.doi: 10.1016/j.carbpol.2013.10.085PMID: 24507351

Aziz SB. Modifying Poly (Vinyl Alcohol)(Pva) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices. Journal of Electronic Materials. 2016;45(1):736-45.doi: 10.1007/s11664-015-4191-9

Abdullah OG, Saleem SA. Effect of Copper Sulfide Nanoparticles on the Optical and Electrical Behavior of Poly (Vinyl Alcohol) Films. Journal of Electronic Materials. 2016;45:5910-20.

Abdullah OG, Aziz SB, Rasheed MA. Structural and Optical Characterization of Pva: Kmno4 Based Solid Polymer Electrolyte. Results in physics. 2016;6:1103-8. doi: https://doi.org/10.1016/j.rinp.2016.11.050

Lee HW, Karim MR, Park JH, Ghim HD, Choi JH, Kim K, et al. Poly (Vinyl Alcohol)/Chitosan Oligosaccharide Blend Submicrometer Fibers Prepared from Aqueous Solutions by the Electrospinning Method. Journal of applied polymer science. 2009;111(1):132-40. doi; https://doi.org/10.1002/app.29033

Bach F, Staufenbiel S, Bodmeier R. Implications of Changes in Physical State of Drugs in Poly (Lactide-Co-Glycolide) Matrices Upon Exposure to Moisture and Release Medium. Journal of Drug Delivery Science and Technology. 2023;80:104115. doi: https://doi.org/10.1016/j.jddst.2022.104115

Ren M, Frimmel FH, Abbt-Braun G. Multi-Cycle Photocatalytic Degradation of Bezafibrate by a Cast Polyvinyl Alcohol/Titanium Dioxide (Pva/Tio2) Hybrid Film. Journal of molecular catalysis A: chemical. 2015;400:42-8. doi: https://doi.org/10.1016/j.molcata.2015.02.004

Zor M, Şen F, Candan Z, Ivanov E, Batakliev T, Georgiev V, et al. Preparation and Characterization of Polyvinyl Alcohol (Pva)/Carbonized Waste Rubber Biocomposite Films. Polymers. 2024;16(8):1050.doi: 10.3390/polym16081050PMID: 38674970

Abitbol T, Johnstone T, Quinn TM, Gray DG. Reinforcement with Cellulose Nanocrystals of Poly (Vinyl Alcohol) Hydrogels Prepared by Cyclic Freezing and Thawing. Soft Matter. 2011;7(6):2373-9. doi: https://doi.org/10.1039/C0SM01172J

Appunni S, Rajesh MP, Prabhakar S. Nitrate Decontamination through Functionalized Chitosan in Brackish Water. Carbohydrate polymers. 2016;147:525-32.

Published

31-08-2024

How to Cite

GUPTA, S., VASANTH, D., & KUMAR, A. (2024). FABRICATION AND CHARACTERIZATION OF DISSOLVING MICRONEEDLE PATCH USING 3D PRINTED MASTER. International Journal of Applied Pharmaceutics, 16(6). https://doi.org/10.22159/ijap.2024v16i6.52314

Issue

Section

Original Article(s)