FABRICATION AND CHARACTERIZATION OF DISSOLVING MICRONEEDLE PATCH USING 3D PRINTED MASTER
DOI:
https://doi.org/10.22159/ijap.2024v16i6.52314Keywords:
Chitosan oligosaccharide, Polyvinyl alcohol, Dissolving microneedles, Characterization, BiopolymerAbstract
Objective: The purpose of this study was to fabricate a dissolving microneedle patch using a 3D-printed master and characterize it using various techniques.
Methods: Dissolving microneedle patches were developed using Computer-Aided Design (CAD) software and 3D printing. Polydimethylsiloxane (PDMS) reverse molds were cast from the 3D-printed masters and filled with a solution of 20% Chitosan Oligosaccharide (COS) and 20% Polyvinyl Alcohol (PVA). The patches were dried at room temperature and characterized using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and in vitro skin penetration studies.
Results: Optical microscopy and SEM images showed the formation of a uniform microneedle. The peak at 1248 cm⁻¹ in the ATR-FTIR spectrum indicates the formation of cross-links between certain PVA radical groups and COS. XRD revealed that both polymers blended well and showed partial crystallinity, with peaks at 2θ = 11.39°, 2θ = 20°, and 2θ = 41°. DSC and TGA analyses revealed that the blend could withstand high temperatures with good stability at temperatures up to 200 °C. In vitro skin penetration studies confirmed that microneedles could successfully penetrate the skin, indicating their potential for effective transdermal drug delivery.
Conclusion: This study demonstrated that COS/PVA dissolving microneedles fabricated using 3D printing and micro-molding have significant potential for transdermal drug delivery.
Downloads
References
Sekar L, Seenivasan R, Reddy MV, Varma KD, Ahmed SS, Pachiyappan JK. Advancements in microneedle technology: comprehensive insights into versatile drug delivery mechanisms. Int J App Pharm. 2024;16(2):1-11. doi: 10.22159/ijap.2024v16i2.49564.
Ita K. Transdermal delivery of drugs with microneedles potential and challenges. Pharmaceutics. 2015;7(3):90-105. doi: 10.3390/pharmaceutics7030090, PMID 26131647.
Manoj VR, Manoj H. Review on transdermal microneedle-based drug delivery. Asian J Pharm Clin Res. 2019;12(1):18-29. doi: 10.22159/ajpcr.2019.v12i1.27434.
Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24(7):585-94. doi: 10.1097/AJP.0b013e31816778f9, PMID 18716497.
Chen W, Wang C, Yan L, Huang L, Zhu X, Chen B. Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin. J Mater Chem B. 2014;2(12):1699-705. doi: 10.1039/c3tb21698e, PMID 32261399.
Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics. 2015;7(4):379-96. doi: 10.3390/pharmaceutics7040379, PMID 26426039.
Chong RH, Gonzalez Gonzalez E, Lara MF, Speaker TJ, Contag CH, Kaspar RL. Gene silencing following sirna delivery to skin via coated steel microneedles: in vitro and in vivo proof of concept. J Control Release. 2013;166(3):211-9. doi: 10.1016/j.jconrel.2012.12.030, PMID 23313112.
Jun H, Han MR, Kang NG, Park JH, Park JH. Use of hollow microneedles for targeted delivery of phenylephrine to treat fecal incontinence. J Control Release. 2015 Jun 10;207:1-6. doi: 10.1016/j.jconrel.2015.03.031, PMID 25828366.
Caffarel Salvador E, Tuan Mahmood TM, McElnay JC, McCarthy HO, Mooney K, Woolfson AD. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489(1-2):158-69. doi: 10.1016/j.ijpharm.2015.04.076, PMID 25940042.
Cole G, McCaffrey J, Ali AA, McBride JW, McCrudden CM, Vincente Perez EM. Dissolving microneedles for DNA vaccination: improving functionality via polymer characterization and Rala complexation. Hum Vaccin Immunother. 2017;13(1):50-62. doi: 10.1080/21645515.2016.1248008, PMID 27846370.
Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113-24. doi: 10.1016/j.biomaterials.2007.12.048.
Tiwari A, Sharma S, Soni PK, Paswan SK. Fabrication and development of dissolving microneedle patch of butorphanol tartrate. Int J App Pharm. 2023;15(3):261-71, doi: 10.22159/ijap.2023v15i3.47411.
Rajabi M, Roxhed N, Shafagh RZ, Haraldson T, Fischer AC, Wijngaart WV. Flexible and stretchable microneedle patches with integrated rigid stainless steel microneedles for transdermal biointerfacing. PLOS ONE. 2016;11(12):e0166330. doi: 10.1371/journal.pone.0166330, PMID 27935976.
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68. doi: 10.1016/j.addr.2012.04.005, PMID 22575858.
Qiu Y, LI C, Zhang S, Yang G, HE M, Gao Y. Systemic delivery of artemether by dissolving microneedles. Int J Pharm. 2016;508(1-2):1-9. doi: 10.1016/j.ijpharm.2016.05.006, PMID 27150946.
Wang Q, Yao G, Dong P, Gong Z, LI G, Zhang K. Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution. Eur J Pharm Sci. 2015;66:148-56. doi: 10.1016/j.ejps.2014.09.011, PMID 25446513.
Yao G, Quan G, Lin S, Peng T, Wang Q, Ran H. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: in vitro and in vivo characterization. Int J Pharm. 2017;534(1-2):378-86. doi: 10.1016/j.ijpharm.2017.10.035, PMID 29051119.
Zhang Q, XU C, Lin S, Zhou H, Yao G, Liu H. Synergistic immunoreaction of acupuncture-like dissolving microneedles containing thymopentin at acupoints in immune suppressed rats. Acta Pharm Sin B. 2018;8(3):449-57. doi: 10.1016/j.apsb.2017.12.006.
Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116-27. doi: 10.1016/j.biopha.2017.07.019, PMID 28738520.
Gou M, Qu X, Zhu W, Xiang M, Yang J, Zhang K, et al. Bio-inspired detoxification using 3d-printed hydrogel nanocomposites. Nat Commun. 2014;5(1):3774. doi: 10.1038/ncomms4774, PMID 24805923.
Zhang J, Chen Y, Huang Y, WU W, Deng X, Liu H. A 3d‐printed self‐adhesive bandage with drug release for peripheral nerve repair. Adv Sci (Weinh). 2020;7(23):2002601. doi: 10.1002/advs.202002601, PMID 33304766.
Kuril A, Ambekar A, Nimase B, Giri P, Nikam P, Desai H. Exploring the potential of 3d printing in pharmaceutical development. Int J Curr Pharm Sci. 2023;15(6):31-42. doi: 10.22159/ijcpr.2023v15i6.3085.
Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect-ratio microneedle molds using low-cost 3d printing. Microsyst Nanoeng. 2019;5(1):31645996. doi: 10.1038/s41378-019-0088-8.
Lee S, Wajahat M, Kim JH, Pyo J, Chang WS, Cho SH. Electroless deposition-assisted 3d printing of micro circuitries for structural electronics. ACS Appl Mater Interfaces. 2019;11(7):7123-30. doi: 10.1021/acsami.8b18199, PMID 30681321.
Istock, Getty images. Canada. Available from. https://www.istockphoto.com/search/2/image-ffilm?family=creativeandphrase=skin%20anatomy [Last accessed on 08 Oct 2024]
BioRender. Biorender. Canada. Available from: https://app.com/illustrations/65951fe379282c9642903da2. [Last accessed on 08 Oct 2024]
HE J, Zhang Z, Zheng X, LI L, QI J, WU W. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics. 2021;13(4):33921712. doi: 10.3390/pharmaceutics13040579, PMID 33921712.
Johnson AR, Procopio AT. Low cost additive manufacturing of microneedle masters. 3D Print Med. 2019;5(1):2. doi: 10.1186/s41205-019-0039-x, PMID 30715677.
TU KT, Chung CK. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding. J Micromech Microeng. 2016;26(6):065015. doi: 10.1088/0960-1317/26/6/065015.
Dillon C, Hughes H, O’Reilly NJ, McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int J Pharm. 2017;526(1-2):125-36. doi: 10.1016/j.ijpharm.2017.04.066, PMID: 28461268.
Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D. Poly (vinyl alcohol) microneedles: fabrication characterization and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88-103. doi: 10.1016/j.ejpb.2018.05.017, PMID 29800617.
Monkare J, Reza Nejadnik MR, Baccouche K, Romeijn S, Jiskoot W, Bouwstra JA. Igg-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J Control Release. 2015;218:53-62. doi: 10.1016/j.jconrel.2015.10.002, PMID 26437262.
Bhadale RS, Londhe VY. Inclusion complexed iloperidone loaded dissolving microneedles: characterization in vitro study and dermatopharmacokinetics. J Drug Deliv Sci Technol. 2022 Feb;68:103063. doi: 10.1016/j.jddst.2021.103063.
Gugulothu D, Choudhary SK. Design and in vitro evaluation of floating drug delivery system of glipizide using combination of natural mucilages and synthetic polymers. Int J Pharm Pharm Sci. 2021;13:40-8. doi: 10.22159/ijpps.2021v13i7.41644.
Pervez S, Nasir F, Hidayatullah T, Khattak MA, Alasmari F, Zainab SR. Transdermal delivery of glimepiride: a novel approach using nanomicelle embedded microneedles. Pharmaceutics. 2023;15(8):37631233. doi: 10.3390/pharmaceutics15082019, PMID 37631233.
Farooqui P, Gude R. Formulation development and optimisation of fast dissolving buccal films loaded glimepiride solid dispersion with enhanced dissolution profile using central composite design. Int J Pharm Pharm Sci. 2023;15(6):35-54. doi: 10.22159/ijpps.2023v15i6.47992.
Scypinski S. Editorial: 2021 the year of returning to normalcy hopefully. J Pharm Innov. 2021;16(1):1. doi: 10.1007/s12247-021-09545-6, PMID 33680214.
Aldawood FK, Parupelli SK, Andar A, Desai S. 3D printing of biodegradable polymeric microneedles for transdermal drug delivery applications. Pharmaceutics. 2024;16(2):237. doi: 10.3390/pharmaceutics16020237, PMID 38399291.
Yue L, Zheng M, Wang M, Khan IM, Wang B, MA X. A general strategy to synthesis chitosan oligosaccharide-O-terpineol derivatives with antibacterial properties. Carbohydr Res. 2021;503:108315. doi: 10.1016/j.carres.2021.108315, PMID 33865180.
Yue L, LI J, Chen W, Liu X, Jiang Q, Xia W. Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydr Polym. 2017;176:356-64. doi: 10.1016/j.carbpol.2017.07.043.
Saadiah MA, Zhang D, Nagao Y, Muzakir SK, Samsudin AS. Reducing crystallinity on thin film-based Cmc/Pva hybrid polymer for application as a host in polymer electrolytes. J Non-Crystal Solids. 2019;511:201-11. doi: 10.1016/j.jnoncrysol.2018.11.032.
Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2-11. doi: 10.4103/2230-973X.96920, PMID 23071954.
Mondal N. The role of matrix tablet in drug delivery system. Int J App Pharm. 2018;10(1):1-6. doi: 10.22159//ijap.2018v10i1.21935.
HE MC, Chen BZ, Ashfaq M, Guo XD. Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery. Drug Deliv Transl Res. 2018;8(5):1034-42. doi: 10.1007/s13346-018-0547-z, PMID 29845379.
Mourya VK, Inamdar NN, Choudhari YM. Chitooligosaccharides: synthesis characterization and applications. Polym Sci Ser A. 2011;53(7):583-612. doi: 10.1134/S0965545X11070066.
Jia X, LI Y, Zhang B, Cheng Q, Zhang S. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization. Mater Res Bull. 2008;43(3):611-7. doi: 10.1016/j.materresbull.2007.04.008.
Gupta S, Pramanik AK, Kailath A, Mishra T, Guha A, Nayar S. Composition-dependent structural modulations in transparent poly(vinyl alcohol) hydrogels. Colloids Surf B Biointerfaces. 2009;74(1):186-90. doi: 10.1016/j.colsurfb.2009.07.015, PMID: 19700267.
Pandele AM, Ionita M, Crica L, Dinescu S, Costache M, Iovu H. Synthesis characterization and in vitro studies of graphene oxide/chitosan polyvinyl alcohol films. Carbohydr Polym. 2014;102:813-20. doi: 10.1016/j.carbpol.2013.10.085, PMID 24507351.
Aziz SB. Modifying poly(vinyl alcohol) (pva) from insulator to small bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater. 2016;45(1):736-45. doi: 10.1007/s11664-015-4191-9.
Abdullah OG, Saleem SA. Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly(vinyl alcohol) films. J Electron Mater. 2016;45(11):5910-20. doi: 10.1007/s11664-016-4797-6.
Abdullah OG, Aziz SB, Rasheed MA. Structural and optical characterization of PVA:KMnO 4 based solid polymer electrolyte. Results Phys. 2016;6:1103-8. doi: 10.1016/j.rinp.2016.11.050.
Lee HW, Karim MR, Park JH, Ghim HD, Choi JH, Kim K. Poly(vinyl alcohol)/chitosan oligosaccharide blend submicrometer fibers prepared from aqueous solutions by the electrospinning method. J Appl Polym Sci. 2009;111(1):132-40. doi: 10.1002/app.29033.
Bach F, Staufenbiel S, Bodmeier R. Implications of changes in physical state of drugs in poly(Lactide-Co-Glycolide) matrices upon exposure to moisture and release medium. J Drug Deliv Sci Technol. 2023;80:104115. doi: 10.1016/j.jddst.2022.104115.
Ren M, Frimmel FH, Abbt Braun G. Multi cycle photocatalytic degradation of bezafibrate by a cast polyvinyl alcohol/titanium dioxide (Pva/Tio2) hybrid film. J Mol Cat A Chem. 2015 May 1;400:42-8. doi: 10.1016/j.molcata.2015.02.004.
Zor M, Sen F, Candan Z, Ivanov E, Batakliev T, Georgiev V. Preparation and characterization of polyvinyl alcohol (Pva)/carbonized waste rubber biocomposite films. Polymers. 2024;16(8):38674970. doi: 10.3390/polym16081050, PMID 38674970.
Abitbol T, Johnstone T, Quinn TM, Gray DG. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter. 2011;7(6):2373-9. doi: 10.1039/C0SM01172J.
Appunni S, Rajesh MP, Prabhakar S. Nitrate decontamination through functionalized chitosan in brackish water. Carbohydr Polym. 2016 Aug 20;147:525-32. doi: 10.1016/j.carbpol.2016.03.075.
Published
How to Cite
Issue
Section
Copyright (c) 2024 SHRADDHA GUPTA, DHAKSHINAMOORTHY VASANTH, AWANISH KUMAR
This work is licensed under a Creative Commons Attribution 4.0 International License.