MOLECULAR DOCKING INSIGHTS INTO PROBIOTICS AS POTENTIAL INHIBITORS OF THE PI3K PATHWAY FOR COLON CANCER THERAPY
DOI:
https://doi.org/10.22159/ijap.2025v17i1.52436Keywords:
Phosphoinositide 3-kinases (PI3Ks), Molecular docking, MM-GBSA, ADME, Cancer, Probiotics, Bacteriocins, Anti-cancer agentsAbstract
Objective: This study investigates the interactions of probiotics-derived bacteriocins with Phosphoinositide 3-kinases (PI3Ks), a key enzyme involved in cell growth and survival pathways, with a focus on the cancer-associated PI3K pathway (PDB ID: 1E8X). The aim is to explore the anti-cancer potential of these bacteriocins as inhibitors of the PI3K catalytic subunit.
Methods: Using the Glide module, the study first involved molecular docking of bacteriocins. Next, an Absorption, Distribution, Metabolism, and Excretion (ADME) study was conducted using Qikprop. The Prime Molecular Mechanics Generalised Born Surface Area (MM-GBSA) method was used to calculate binding free energy.
Results: Five bacteriocins demonstrated significant binding affinity and interactions, including hydrogen and hydrophobic bonds, with key residues such as Tyr867, Trp812, Asp950, Asn951, Lys802, Lys890, Lys833, Val882, Ser806, Thr886, and Gln893 in the PI3K catalytic subunit (PDB ID: 1E8X). Among these, Plantaricin D exhibited an excellent XP-docking score of -7.47 kcal/mol, indicating strong binding potential. Prime MM-GBSA analysis revealed promising binding affinities with ΔBind (-92.85 kcal/mol), ΔLipo (-65.81 kcal/mol), and ΔVdW (-47.34 kcal/mol). The ligand consistently interacted with residues Asp950, Lys890, Gln893, Ser894, Thr887, Ala885, Tyr757, Asp758, Lys802, and Val759.
Conclusion: Plantaricin D bacteriocin, characterized by functional groups including the primary amine (NH₂), carbonyl (C=O), hydroxide (OH), and oxygen (O), demonstrates significant potential as a PI3K inhibitor. This suggests its promising application as an anti-cancer agent, particularly for colon cancer
Downloads
References
Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381–405. DOI: 10.1016/j.cell.2017.04.001. PMID: 28431241
Cantley LC. The Phosphoinositide 3-Kinase Pathway. Science. 2002 May 31;296(5573):1655–7. DOI: 10.1126/science.296.5573.1655. PMID: 12040186
Quinto EJ, Jiménez P, Caro I, Tejero J, Mateo J, Girbés T. Probiotic lactic acid bacteria: a review. Food and Nutrition Sciences. 2014;5(18):1765. DOI: 10.4236/fns.2014.518190
Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology. 2013;11(2):95–105. . DOI: 10.1038/nrmicro2937. PMID: 23268227
Huong TT, Ngoc LNT, Kang H. Functional characterization of a putative RNA demethylase ALKBH6 in Arabidopsis growth and abiotic stress responses. International journal of molecular sciences. 2020;21(18):6707. DOI: 10.3390/ijms21186707. PMID: 32933187
Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Molecular cell. 2000;6(4):909–19. DOI: 10.1016/s1097-2765(05)00089-4. PMID: 11090628
Gadewar M, Lal B. Molecular docking and screening of drugs for 6lu7 protease inhibitor as a potential target for Covid-19. International Journal of Applied Pharmaceutics. 2022;14(1):100–5. DOI: https://dx.doi.org/10.22159/ijap.2022v14i1.43132.
Pant K, Karpel RL, Rouzina I, Williams MC. Mechanical measurement of single-molecule binding rates: kinetics of DNA helix-destabilization by T4 gene 32 protein. Journal of molecular biology. 2004;336(4):851–70. DOI: 10.1016/j.jmb.2003.12.025. PMID: 15095865
Sherman W, Beard HS, Farid R. Use of an Induced Fit Receptor Structure in Virtual Screening. Chem Biol Drug Des. 2006 Jan;67(1):83–4. DOI: 10.1111/j.1747-0285.2005.00327.x. PMID: 16492153
Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J Chem Theory Comput. 2016 Jan 12;12(1):281–96. DOI: 10.1021/acs.jctc.5b00864. PMID: 26584231
Procacci P. Methodological uncertainties in drug-receptor binding free energy predictions based on classical molecular dynamics. Current Opinion in Structural Biology. 2021;67:127–34. DOI: 10.1016/j.sbi.2020.08.001. PMID: 33220532
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J Med Chem. 2004 Mar 1;47(7):1739–49. DOI: 10.1021/jm0306430. PMID: 15027865
Jayanthi K, Ahmed SS, Baqi MA, Azam MA. Molecular Docking Dynamics Of Selected Benzylidene Amino Phenyl Acetamides As Tmk Inhibitors Using High Throughput Virtual Screening(Htvs). Int J App Pharm. 2024;16(3):292–7. DOI: https://dx.doi.org/10.22159/ijap.2024v16i3.50023.
Divyashri G, Murthy TK, Sundareshan S, Kamath P, Murahari M, Saraswathy GR, Sadanandan B. In silico approach towards the identification of potential inhibitors from Curcuma amada Roxb against H. pylori: ADMET screening and molecular docking studies. BioImpacts: BI. 2021;11(2):119. DOI: 10.34172/bi.2021.19. PMID: 33842282
Mulakala C, Viswanadhan VN. Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? Journal of Molecular Graphics and Modelling. 2013;46:41–51. DOI: 10.1016/j.jmgm.2013.09.005. PMID: 24121518
Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology. 2004;15(2):67–78. DOI: https://doi.org/10.1016/j.tifs.2003.09.004.
Barbosa M de S, Todorov SD, Belguesmia Y, Choiset Y, Rabesona H, Ivanova IV, Chobert JM, Haertlé T, Franco BDG de M. Purification and characterization of the bacteriocin produced by Lactobacillus sakei MBSa1 isolated from Brazilian salami. Journal of applied microbiology. 2014;116(5):1195–208. DOI: 10.1111/jam.12438. PMID: 24506656
Lewus CB, Montville TJ. Further characterization of bacteriocins plantaricin BN, bavaricin MN and pediocin A. Food biotechnology. 1992;6(2):153–74. DOI: https://doi.org/10.1080/08905439209549829.
Aasen IM, Markussen S, Møretrø T, Katla T, Axelsson L, Naterstad K. Interactions of the bacteriocins sakacin P and nisin with food constituents. International journal of food microbiology. 2003;87(1–2):35–43. DOI: 10.1016/s0168-1605(03)00047-3. PMID: 12927705
Hanzelik PP, Gergely S, Gáspár C, GyHory L. Machine learning methods to predict solubilities of rock samples. Journal of Chemometrics. 2020;34(2):e3198. DOI: https://doi.org/10.1002/cem.3198.
Kumari R, Kumar R, Consortium OSDD, Lynn A. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. Journal of chemical information and modeling. 2014;54(7):1951–62. DOI: 10.1021/ci500020m. PMID: 24850022
Wencewicz TA. New antibiotics from Nature’s chemical inventory. Bioorganic & medicinal chemistry. 2016;24(24):6227–52. DOI: 10.1016/j.bmc.2016.09.014. PMID: 27658795
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 2012;64:4–17. DOI: 10.1016/s0169-409x(00)00129-0. PMID: 11259830
Redhu S, Jindal A. Molecular modelling: a new scaffold for drug design. Int J Pharm Pharm Sci . 2013; 21;5(5).
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers. 2020;12(6):1579. DOI: 10.3390/cancers12061579. PMID: 32549302
Zhivkova Z. Quantitative structure-pharmacokinetics modeling of the unbound clearance for neutral drugs. Int J Curr Pharmac Res. 2018;10:56–9. DOI: http://dx.doi.org/10.22159/ijcpr.2018v10i2.25849.
Pounikar AR, Umekar MJ, Gupta KR. Genotoxic impurities: an important regulatory aspect. Asian J Pharm Clin Res. 2020;13(6):10–25. DOI: http://dx.doi.org/10.22159/ajpcr.2020.v13i6.37370.
Thiyam R, Narasu ML. Evaluation of cytotoxic and genotoxic effects of Zerumbone on colon adenocarcinoma COLO205 cells and human lymphocytes. International Journal of Pharmacy and Pharmaceutical Sciences. 2017;92–6.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Mohd Abdul Baqi
This work is licensed under a Creative Commons Attribution 4.0 International License.