MOLECULAR DOCKING DYNAMICS OF SELECTED BENZYLIDENE AMINO PHENYL ACETAMIDES AS TMK INHIBITORS USING HIGH THROUGHPUT VIRTUAL SCREENING (HTVS)
DOI:
https://doi.org/10.22159/ijap.2024v16i3.50023Keywords:
Thymidylate kinase (TMK), Molecular docking, Molecular dynamics simulations, MM-GBSA, ADME, HTVSAbstract
Objective: Thymidylate kinase (TMK) plays a crucial role in bacterial DNA synthesis by catalyzing the phosphorylation of deoxythymidine monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). Consequently, this enzyme emerges as a promising target for developing novel antibacterial drugs. However, no antibiotics were reported for this target, especially active against Staphylococcus aureus thymidylate kinase.
Methods: Benzylidene acetamide-based ligands were examined for their potency using the in silico method. These novel ligand structures were built using ChemDraw software. The protein was retrieved from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) website. The molecular docking and binding free energy calculation by prime Molecular Mechanics in Generalized Bond Surface Area (MM-GBSA) was performed for selected ligands. A 100 ns molecular dynamic simulation was also performed to assess the stability of the potential ligand as TMK inhibitors.
Results: All ten molecules have shown good glide scores and hydrophobic and hydrogen hydrophobic hydrogen bonding interactions with Arg48, Arg36, and π-π stacking Phe66 in the TMK enzyme (PDB: 4HLC). Among them, N-(2-ethylphenyl)-2-(4-((4-nitrobenzylidene) amino) phenoxy) acetamide molecule had high XP-docking scores of-3.27 kcal/mol based on extra-precision data. Prime Molecular Mechanics in Generalized Bond Surface Area study (MM-GBSA) studies also showed promising binding affinities that are ΔBind (-65.80), ΔLipo (-28.55), and ΔVdW (-55.10). Phe66 amino acid residue maintained continuous connections with the ligand during MD simulation. This ligand showed promising binding affinity with the SaTMK target.
Conclusion: The N-(2-ethylphenyl)-2-(4-((4-nitrobenzylidene) amino) phenoxy) acetamide ligand at the position of the benzene ring displayed nitrogen and oxygen group, thus indicating good potential activity as the inhibitor of TMK to treat antibacterial agents.
Downloads
References
Jones TF, Creech CB, Erwin P, Baird SG, Woron AM, Schaffner W. Family outbreaks of invasive community-associated methicillin-resistant Staphylococcus aureus infection. Clinical Infectious Diseases. 2006;42(9):e76–8. doi:10.1086/503265. PMID 16586378.
Bhatia R, Narain JP. The growing challenge of antimicrobial resistance in the Southeast Asia Region- Are we losing the battle? The Indian journal of medical research. 2010;132(5):482. doi:10.4103/0971-5916.73313. PMID 21149995.
Shurland S, Zhan M, Bradham DD, Roghmann MC. Comparison of mortality risk associated with bacteremia due to methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Infection Control & Hospital Epidemiology. 2007;28(3):273–9. doi:10.1086/512627. PMID 17326017.
Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA. Methicillin-Resistant S. aureus Infections among Patients in the Emergency Department. N Engl J Med. 2006 Aug 17;355(7):666–74. doi:10.1056/NEJMoa055356.PMID 16914702
Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018 Oct;31(4):e00020-18. doi:10.1128/cmr.00020-18. PMID 30209034.
Khan TM, Kok YL, Bukhsh A, Lee LH, Chan KG, Goh BH. Incidence of methicillin-resistant Staphylococcus aureus (MRSA) in burn intensive care unit: a systematic review. Germs. 2018;8(3):113. doi:10.18683/germs.2018.1138. PMID 30250830.
Antonanzas F, Lozano C, Torres C. Economic Features of Antibiotic Resistance: The Case of Methicillin-Resistant Staphylococcus aureus. PharmacoEconomics. 2015 Apr;33(4):285–325. doi:10.1007/s40273-014-0242-y. PMID 25447195.
Munier‐Lehmann H, Chaffotte A, Pochet S, Labesse G. Thymidylate kinase of Mycobacterium tuberculosis: A chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Science. 2001 Jun;10(6):1195–205. doi:10.1110/ps.45701. PMID 11369858.
Ostermann N, Schlichting I, Brundiers R, Konrad M, Reinstein J, Veit T, Goody RS, Lavie A. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure. 2000;8(6):629–42. doi: 10.1016/s0969-2126(00)00149-0. PMID 10873853.
Kotaka M, Dhaliwal B, Ren J, Nichols CE, Angell R, Lockyer M, Hawkins AR, Stammers DK. Structures of S. aureus thymidylate kinase reveal an atypical active site configuration and an intermediate conformational state upon substrate binding. Protein Science. 2006 Apr;15(4):774–84. doi:10.1110/ps.052002406. PMID 16522804.
Jayanthi K, Azam MA. Thymidylate Kinase Inhibitors as Antibacterial Agents: A Review. Appl Biochem Microbiol. 2023 Jun;59(3):250–66. doi:10.1134/S0003683823030092.
Martínez-Botella G, Loch JT, Green OM, Kawatkar SP, Olivier NB, Boriack-Sjodin PA, Keating TA. Sulfonylpiperidines as novel, antibacterial inhibitors of Gram-positive thymidylate kinase (TMK). Bioorganic & medicinal chemistry letters. 2013;23(1):169–73. doi: 10.1016/j.bmcl.2012.10.128. PMID 23206863.
Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies. 2004;1(4):337–41. doi: 10.1016/j.ddtec.2004.11.007. PMID 24981612.
Pham EC, Thi TVL, Phan LT, Nguyen HGT, Le KNB, Truong TN. Design, synthesis, antimicrobial evaluations and in silico studies of novel pyrazol-5(4H)-one and 1H-pyrazol-5-ol derivatives. Arabian Journal of Chemistry. 2022 Mar 1;15(3):103682.doi: 10.1016/j.arabjc.2021.103682.
Venugopala KN, Tratrat C, Pillay M, Chandrashekharappa S, Al-Attraqchi OHA, Aldhubiab BE, Attimarad M, Alwassil OI, Nair AB, Sreeharsha N, Venugopala R, Morsy MA, Haroun M, Kumalo HM, Odhav B, Mlisana K. In silico Design and Synthesis of Tetrahydropyrimidinones and Tetrahydropyrimidinethiones as Potential Thymidylate Kinase Inhibitors Exerting Anti-TB Activity Against Mycobacterium tuberculosis. DDDT. 2020 Mar; Volume 14:1027–39.doi:10.2147/DDDT.S228381. PMID 32214795.
James JP, Aiswarya TC, Priya S, Jyothi D, Dixit SR. Structure based multitargeted molecular docking analysis of pyrazole-condensed heterocyclics against lung cancer. Int J App Pharm. 2021;3(6):157–69. doi:10.22159/ijap.2021v13i6.42801.
Dar AM, Mir S. Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech. 2017;8(2):1–3.
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013 Mar;27(3):221–34. doi: 10.1007/s10822-013-9644-8.PMID 23579614.
Sukumaran S, M M, S S, B A, S S, S ST. Insilico analysis of acridone against TNF-α and PDE4 targets for the treatment of psoriasis. International Journal of Research in Pharmaceutical Sciences. 2020 Dec 18;11(4):7790–8.
Dunkel M, Fullbeck M, Neumann S, Preissner R. SuperNatural: a searchable database of available natural compounds. Nucleic acids research. 2006;34(suppl_1):D678–83. doi: 10.1093/nar/gkj132.PMID 16381957.
Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA. A hierarchical approach to all‐atom protein loop prediction. Proteins. 2004 May;55(2):351–67. doi:10.1002/prot.10613.PMID 15048827.
Dhawale S, Gawale S, Jadhav A, Gethe K, Raut P, Hiwarale N, Bhosale P, Tapadiya AG. In silico approach targeting polyphenol as Fabh inhibitor in bacterial infection. International Journal of Pharmacy and Pharmaceutical Sciences. 2022;14(11):25–30.doi: 10.22159/ijpps.2022v14i11.45816.
Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. Explicit reversible integrators for extended systems dynamics. Molecular Physics. 1996;87(5):1117–57. doi: 10.1080/00268979600100761.
Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G. Probing the α‐Helical Structural Stability of Stapled p53 Peptides: Molecular Dynamics Simulations and Analysis. Chem Biol Drug Des. 2010 Apr;75(4):348–59. doi:10.1111/j.1747-0285.2010.00951.x. PMID 20331649.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. The Journal of chemical physics. 1995;103(19):8577–93. doi: 10.1063/1.470117.
Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J Chem Theory Comput. 2016 Jan 12;12(1):281–96. doi: 10.1021/acs.jctc.5b00864. PMID 26584231.
Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics. 1994 Sep 1;101(5):4177–89. doi:10.1063/1.467468.
Badavath VN, Sinha BN, Jayaprakash V. Design, in-silico docking and predictive ADME properties of novel pyrazoline derivatives with selective human MAO inhibitory activity. Int J Pharm Pharm Sci. 2015;7:277–82.
Haouz A, Vanheusden V, Munier-Lehmann H, Froeyen M, Herdewijn P, Van Calenbergh S, Delarue M. Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase: new insights into the phosphoryl transfer mechanism. Journal of Biological Chemistry. 2003;278(7):4963–71. doi: 10.1074/jbc.M209630200. PMID: 12454011.
Published
How to Cite
Issue
Section
Copyright (c) 2024 KOPPULA JAYANTHI, SYED SUHAIB AHMED, MOHD ABDUL BAQI, MOHAMMED AFZAL AZAM
This work is licensed under a Creative Commons Attribution 4.0 International License.