SURFACE SOLID DISPERSION OF MORINGA OLEIFERA LEAF EXTRACT-MICROCRYSTALLINE CELLULOSE PH 102-POLOXAMER 188: PREPARATION AND CHARACTERIZATION
DOI:
https://doi.org/10.22159/ijap.2024v16s5.52466Keywords:
Moringa oleifera, Surface solid dispersion, Microwave irradiationAbstract
Objective: The development of pharmaceutical products containing Moringa oleifera leaf extract has not developed well due to the physical and chemical characteristics limitations. The development of Surface Solid Dispersion (SSD) of Moringa oleifera leaves extract-microcrystalline cellulose PH102-Poloxamer 188 with 1:2:0.5 and 1:4:0.5 was performed in this study to improve the physicochemical characteristics of this extract.
Methods: SSD were prepared by microwave irradiation method using 400 W of power and 3 min of time exposure. The prepared SSD were evaluated for flowability, compressibility, moisture content, thermal characteristics (Differential Scanning Calorimetry (DSC)), crystallinity (Powder X-ray Diffractometry (PXRD)), functional group interaction (Fourier Transform Infra-Red Spectroscopy (FT-IR)), morphology (Scanning Electron Microscopy (SEM)), total flavonoid content, solubility study, and antioxidant activity.
Results: SSD powder exhibited better flowability, compressibility, and moisture content compared to the physical mixture (PM). The results of thermal characteristics and crystallinity of SSD indicate partial transformation into an amorphous phase. The total flavonoid content of SSD 1:2:0.5 was 11.04±0.23 mg QE/g, whereas SSD 1:4:0.5 was 9.18±0.05 mg QE/g. The solubility of the flavonoid compound from SSD 1:2:0.5 (78.73±0.76 µg/ml) and SSD 1:4:0.5 (61.90±3.38 µg/ml) was higher than PM with the equal ratio. The antioxidant activity was expressed as IC50 values of SSD, which are 276.72±24.18 ppm for a 1:2:0.5 ratio and 249.04±27.29 ppm for a 1:4:0.5 ratio.
Conclusion: SSD preparation successfully improved the physicochemical characteristics and solubility of Moringa oleifera leaf extract. SSD 1:2:0.5 was the optimized composition from this study.
Downloads
References
El Sohaimy SA, Hamad GM, Mohamed SE, Amar MH Al-Hindi RR. Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food. Glob Adv Res J. 2015;4(4):188-99.
Coppin JP, XU Y, Chen H, Pan MH, HO CT, Juliani R. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J Funct Foods. 2013;5(4):1892-9. doi: 10.1016/j.jff.2013.09.010.
Martono Y, Yanuarsih FF, Aminu NR, Muninggar J. Fractionation and determination of phenolic and flavonoid compound from Moringa oleifera leaves. J Phys: Conf Ser. 2019;1307(1):12014. doi: 10.1088/1742-6596/1307/1/012014.
Swathi S. Phytochemical screening and TLC studies of Moringa oleifera extract: their antibacterial and antioxidant activities. Int J Curr Pharm Rev Res. 2016;8(1):46-9.
Suhartono S, Ismail YS, Muhayya SR, Husnah M. Ethanolic extracts of Moringa oleifera leaves inhibit biofilm formation of vibrio alginolyticus in vitro. IOP Conf Ser: Earth Environ Sci. 2019;348(1):12018. doi: 10.1088/1755-1315/348/1/012018.
Husni E, Badriyya E, Putri L, Aldi Y. The effect of ethanol extract of moringa leaf (Moringa oleifera lam) against the activity and capacity of phagocytosis of macrofag cells and the percentage of leukosit cells of white mice. Pharmacogn J. 2021;13(3):706-12. doi: 10.5530/pj.2021.13.90.
Jin S, Lee CH, Lim DY, Lee J, Park SJ, Song IS. Improved hygroscopicity and bioavailability of solid dispersion of red ginseng extract with silicon dioxide. Pharmaceutics. 2021;13(7):1022. doi: 10.3390/pharmaceutics13071022, PMID 34371714.
Reddy CK, Jung ES, Son SY, Lee CH. Inclusion complexation of catechins rich green tea extract by β-cyclodextrin: preparation physicochemical thermal and antioxidant properties. LWT Food Sci Technol. 2020 May;131:109723. doi: 10.1016/j.lwt.2020.109723.
Sayyad FJ, Sakhare SS. Studies on ocimum basilicum mucilage-based solid dispersions of indomethacin for enhancement of dissolution rate. JRP. 2019;23(5):832-8. doi: 10.35333/jrp.2019.31.
Weerapol Y, Tubtimsri S, Jansakul C, Sriamornsak P. Improved dissolution of Kaempferia parviflora extract for oral administration by preparing solid dispersion via solvent evaporation. Asian J Pharm Sci. 2017;12(2):124-33. doi: 10.1016/j.ajps.2016.09.005, PMID 32104321.
Jovanovic AA, Levic SM, Pavlovic VB, Markovic SB, Pjanovic RV, Dordevic VB. Freeze vs spray drying for dry wild thyme (Thymus serpyllum L.) extract formulations: the impact of gelatin as a coating material. Molecules. 2021;26(13):3933. doi: 10.3390/molecules26133933, PMID 34203164.
Chen B, Wang X, Zhang Y, Huang K, Liu H, XU D. Improved solubility dissolution rate and oral bioavailability of main biflavonoids from selaginella doederleinii extract by amorphous solid dispersion. Drug Deliv. 2020;27(1):309-22. doi: 10.1080/10717544.2020.1716876, PMID 32037895.
Patel B, Parikh RH, Swarnkar D. Enhancement of dissolution of telmisartan through use of solid dispersion technique surface solid dispersion. J Pharm Bioallied Sci. 2012;4Suppl 1:S64-8. doi: 10.4103/0975-7406.94142, PMID 23066211.
Abd-El Bary A, Louis D, Sayed S. Polmesartan medoxomil surface solid dispersion based orodispersible tablets: formulation and in vitro characterization. J Drug Deliv Sci Technol. 2014;24(6):665-72. doi: 10.1016/S1773-2247(14)50134-7.
Chaturvedi M, Kumar M, Pathak K, Bhatt S, Saini V. Surface solid dispersion and solid dispersion of meloxicam: comparison and product development. Adv Pharm Bull. 2017;7(4):569-77. doi: 10.15171/apb.2017.068, PMID 29399546.
Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose a direct compression binder in a quality by design environment a review. Int J Pharm. 2014;473(1-2):64-72. doi: 10.1016/j.ijpharm.2014.06.055, PMID 24993785.
Patel RC, Keraliya RA, Patel MM, Patel NM. Formulation of furosemide solid dispersion with microcrystalline cellulose for achieve rapid dissolution. J Adv Pharm Technol Res. 2010;1(2):180-9. doi: 10.4103/2231-4040.72256, PMID 22247844.
Al-Hanbali OA, Hamed R, Arafat M, Bakkour Y, Al-Matubsi H, Mansour R. Formulation and evaluation of diclofenac controlled release matrix tablets made of HPMC and poloxamer 188 polymer: an assessment on mechanism of drug release. Pak J Pharm Sci. 2018 Jan;311 Suppl:345-51. PMID 29386164.
Isaac J, Kaity S, Ganguly S, Ghosh A. Microwave induced solid dispersion technology to improve the bioavailability of glipizide. J Pharm Pharmacol. 2013;65(2):219-29. doi: 10.1111/j.2042-7158.2012.01595.x, PMID 23278689.
Moneghini M, Bellich B, Baxa P, Princivalle F. Microwave generated solid dispersions containing ibuprofen. Int J Pharm. 2008;361(1-2):125-30. doi: 10.1016/j.ijpharm.2008.05.026, PMID 18573321.
Alshehri S, Shakeel F, Ibrahim M, Elzayat E, Altamimi M, Shazly G. Influence of the microwave technology on solid dispersions of mefenamic acid and flufenamic acid. Plos One. 2017;12(7):e0182011. doi: 10.1371/journal.pone.0182011, PMID 28759638.
Mahdi H, Yousif E, Khan N, Mahmud R, Murugaiyah V, Asmawi M. Optimizing extraction conditions of moringa oleifera lam leaf for percent yield total phenolics content total flavonoids content and total radical scavenging activity. Int J Adv Res. 2016;4(11):682-95. doi: 10.21474/IJAR01/2133.
Tafu NN, Jideani VA. Characterization of novel solid dispersions of moringa oleifera leaf powder using thermo analytical techniques. Processes. 2021;9(12):2230. doi: 10.3390/pr9122230.
Meka AK, Pola S, Tupally KR, Abbaraju PL. Development evaluation and characterization of surface solid dispersion for solubility and dissolution enhancement of irbesartan. Int J Drug Dev Res. 2012;4(1):263-73.
Sanzida N. Determination of optimum drying temperature profile by iterative learning control (ILC) method to obtain a desired moisture content in tablets. Chem Eng Res Bull. 2018;20(1):1. doi: 10.3329/cerb.v20i1.36923.
Sun CC. Mechanism of moisture-induced variations in true density and compaction properties of microcrystalline cellulose. Int J Pharm. 2008;346(1-2):93-101. doi: 10.1016/j.ijpharm.2007.06.017, PMID 17669609.
Kementerian Kesehatan RI. Indonesian pharmacopeia sixth edition. Kemenkes RI; 2020. p. 2023-5.
Saw HY, Davies CE, Paterson AH, Jones JR. Correlation between powder flow properties measured by shear testing and hausner ratio. Procedia Eng. 2015 Dec;102:218-25. doi: 10.1016/j.proeng.2015.01.132.
Fachriyah E, Kusrini D, Haryanto IB, Wulandari SM, Lestari WI, Sumariyah S. Phytochemical test determination of total phenol total flavonoids and antioxidant activity of ethanol extract of moringa leaves (Moringa oleifera Lam). J Kim Sains Apl. 2020;23(8):290-4. doi: 10.14710/jksa.23.8.290-294.
Chaves N, Santiago A, Alias JC. Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used. Antioxidants (Basel). 2020;9(1):76. doi: 10.3390/antiox9010076, PMID 31952329.
Setiawan F, Oeke Yunita AK. Antioxidant activity test of ethanol extract of secang wood (Caesalpinia sappan) using the DPPH ABTS and FRAP methods. Media Pharm Indones. 2020;2(2):25-8.
Rani KC, Nawatila R, Winantari A, Pradana AT, Ikhrom N, Jayani E. Preparation and evaluation of surface solid dispersion of Moringa oleifera leaf extract using freeze drying method. J Res Pharm. 2023;27(6):2330-41.
Wulandari L, Retnaningtyas Y, Nuri LH, Lukman H. Analysis of flavonoid in medicinal plant extract using infrared spectroscopy and chemometrics. J Anal Methods Chem. 2016;2016:4696803. doi: 10.1155/2016/4696803, PMID 27529051.
Nabarawi ME, Elsetouhy DA, Abdelmonem R, El-Hosseini A. Enhancement of loratadine dissolution by surface solid dispersion: the potential use of co-processed excipients as on surface carriers. Int J Appl Pharm. 2022;14(6):202-14.
Wicaksono Y, Tsaniyah SF, Wisudyaningsih B, Barikah KZ, Sari LO. Preparation of atorvastatin calcium dipicolinic acid multicomponent solids by liquid assisted grinding method to increase solubility. Molekul. 2022;17(3):365-72. doi: 10.20884/1.jm.2022.17.3.5946.
Terinte N, Ibbett R, Schuster KC. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Ber. 2017;89:118-31.
Agustina R, Setyaningsih D. Solid dispersion as a potential approach to improve dissolution and bioavailability of curcumin from turmeric (Curcuma longa l.). Int J App Pharm. 2023;15(5):37-47. doi: 10.22159/ijap.2023v15i5.48295.
Barzegar Jalali M, Ghanbarzadeh S, Adibkia K, Valizadeh H, Bibak S, Mohammadi G. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers. BioImpacts. 2014;4(3):141-8. doi: 10.15171/bi.2014.007, PMID 25337467.
Sumirtapura YC, Pamudji JS, Windriyati YN. Dissolution enhancement and physicochemical characterization of fenofibric acid in surface solid dispersion with croscarmellose sodium. JRP. 2019;23(2):315-25. doi: 10.12991/jrp.2019.139.
Zawar L, Bari S. Microwave induced solid dispersion as a novel technique for enhancing dissolution rate of repaglinide. Adv Pharmacol Pharm. 2013;1(2):95-101. doi: 10.13189/app.2013.010208.
Sapkal SB, Adhao VS, Thenge RR, Darakhe RA, Shinde SA, Shrikhande VN. Formulation and characterization of solid dispersions of etoricoxib using natural polymers. Turk J Pharm Sci. 2020;17(1):7-19. doi: 10.4274/tjps.galenos.2018.04880, PMID 32454755.
Saha SK, Joshi A, Singh R, Dubey K. Enhanced solubility and dissolution by surface modified solid dispersion of alectinib hydrochloride. Int J App Pharm. 2023;15(4):257-65. doi: 10.22159/ijap.2023v15i4.47851.
Soares E, Silva LS, DE Santos, DA Silva LS, Brumano L, Stringheta PC, Aparecida DE Oliveira Pinto M, Moreira Dias LO. Preparation of dry extract of mikania glomerata sprengel (Guaco) and determination of its coumarin levels by spectrophotometry and HPLC-UV. Molecules. 2012;17(9):10344-54. doi: 10.3390/molecules170910344, PMID 22932215.
Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS Pharm Sci Tech. 2008;9(1):250-8. doi: 10.1208/s12249-008-9046-8, PMID 18446489.
Fattahi S, Zabihi E, Abedian Z, Pourbagher R, Motevalizadeh Ardekani A, Mostafazadeh A. Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on hela and BT-474 cell lines. Int J Mol Cell Med. 2014;3(2):102-7. PMID 25035860.
Ogundele OM, Awolu OO, Badejo AA, Nwachukwu ID, Fagbemi TN. Development of functional beverages from blends of hibiscus sabdariffa extract and selected fruit juices for optimal antioxidant properties. Food Sci Nutr. 2016;4(5):679-85. doi: 10.1002/fsn3.331, PMID 27625770.
Published
How to Cite
Issue
Section
Copyright (c) 2024 KARINA C. RANI, ROISAH NAWATILA, ZULVIARA PD NATASYA, VERONIKA G. ANGELA, WINDA M WANTI, NIKMATUL IE JAYANI
This work is licensed under a Creative Commons Attribution 4.0 International License.