EVALUATING THE EFFECT OF MATOA LEAVES ETHANOL EXTRACTS (POMETIA PINNATA J.R. FORST & G. FORST) ON PANCREATIC Β-CELLS INSULIN RELEASE

Authors

  • MUHAMMAD LABIB QOTRUN NIAM1 Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Sukoharjo-57162, Indonesia
  • SELLA APRILIA Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Sukoharjo-57162, Indonesia
  • ARIFAH SRI WAHYUNI Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Sukoharjo-57162, Indonesia
  • TISTA AYU FORTUNA Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Sukoharjo-57162, Indonesia
  • FAZLEEN IZZANI ABU BAKAR Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM)-84600 Muar, Johor, Malaysia
  • ARINI FADHILAHI Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Sukoharjo-57162, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024v16s5.52470

Keywords:

Immunohistochemical, Insulin, Hypoglycemic agents, Pancreas, Pometia pinnata

Abstract

Objective: Matoa Leaves Ethanol Extract (Pometia pinnata J.R. Forst & G.Forst) (MLEE) with flavonoid content has been proven to have antioxidant activity that can neutralize free radicals so it can potentially repair damage to pancreatic β-cells that produce the hormone insulin. This study aimed to determine the ability of Matoa Leaves Ethanol Extract (MLEE) to lower fasting blood glucose (FBG) levels and determine the increase in insulin expression of rats' pancreatic β-cells induced by alloxan 150 mg/KgBW.

Methods: Experimental research was conducted using Complete Randomized Design on 6 groups, including normal group, negative control, positive control (glibenclamide 5 mg/KgBW), and MLEE groups with 50, 100, and 200 mg/KgBW for 14 days. The efficacy of MLEE in insulin release can be assessed by its ability to reduce blood glucose levels and modulate insulin production in pancreatic β-cells. Expression is quantified based on the distribution and intensity of staining observed using the ImmunoHistoChemistry (IHC) method. The Fasting Blood Glucose (FBG) data and IHC scores were subjected to analysis using a one-way ANOVA.

Results: The results indicate that administering a dose of 50 mg/KgBW of MLEE for duration 14 days effectively reduced FBG levels to 143.25 mg/dL (p<0.05) via enhancing the secretion of insulin in pancreatic β-cells (p<0.05).

Conclusion: It was found that MLEE dosages of 50, 100, and 200 mg/KgBW efficiently reduced FBG levels and enhanced insulin expression in pancreatic β-cells in rats

Downloads

Download data is not yet available.

References

IDF. Five questions on the IDF diabetes atlas. Diabetes Res Clin Pract 2021;102:1–141. https://doi.org/10.1016/j.diabres.2013.10.013.

Yulianti T, Anggraini L. Factors affecting medication adherence in outpatient diabetes mellitus at RSUD Sukoharjo. J Farm Indones 2020;17:110–20. https://doi.org/10.23917/pharmacon.v17i2.12261.

Wang X, Liu J, Huang L, Zeng H, He G, Chen L, et al. Anti-diabetic Agents for Prevention of Type 2 Diabetes Mellitus in People with Pre-diabetes: A Systematic Review and Network Meta-Analysis Protocol. BMJ Open 2019;9:1–4. https://doi.org/10.1136/bmjopen-2019-029073.

American Diabetes Association. Introduction : Standards of Medical Care in Diabetes — 2022. Diabetes Care 2022;45:2021–2.

Darusman F, Rusdiana T, Sopyan I, Yuliar NF, Aryani R. Bioequivalence of Metformin As an Oral Antidiabetic: a Systematic Review. Int J Appl Pharm 2023;15:76–81. https://doi.org/10.22159/ijap.2023v15i6.49142.

Ilyas S, Tanjung M, Nurahyuni I, Zahara E. Effect of Mahkota Dewa Ethanolic Extract (Phaleria macrocarpa) to Kidney Histology of Preeclampsia Rats. IOP Conf Ser Earth Environ Sci 2019;305:12079. https://doi.org/10.1088/1755-1315/305/1/012079.

Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Multidiscip Digit Publ Inst 2020;12:1–54.

Mutmainah N, Al Ayubi M, Widagdo A. Adherence and Quality of Life Patients of Diabetes Melitus Type 2 in Hospitals in Central Java. Pharmacon J Farm Indones 2020;17:165–73. https://doi.org/10.23917/pharmacon.v17i2.12281.

Suharti N, Armenia A, Abdillah R, Ramadan CM. Roselle Calyx (Hibiscus Sabdariffa. L) As an Anti-Diabetic: Ethyl Acetate Fraction Reduce Fasting Blood Glucose Total Cholesterol and Repair Pancreas Function on Diabetic Model. Int J Appl Pharm 2024;16:105–10. https://doi.org/10.22159/ijap.2024.v16s1.25.

Sok Yen F, Shu Qin C, Tan Shi Xuan S, Jia Ying P, Yi Le H, Darmarajan T, et al. Hypoglycemic Effects of Plant Flavonoids: A Review. Evidence-Based Complement Altern Med 2021;2021. https://doi.org/10.1155/2021/2057333.

Tenuta MC, Deguin B, Loizzo MR, Dugay A, Acquaviva R, Malfa GA, et al. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants 2020;9:1–25. https://doi.org/10.3390/antiox9020184.

Yuniastuti E, Masailla APD, Nandariyah, Rahmah N. Karyotyping of green, yellow and red matoa (Pometia pinnata J.R.Forst. & G.Forst.) from Central Java, Indonesia. Biodiversitas 2023;24:40–6. https://doi.org/10.13057/biodiv/d240106.

Setiarso P, Kusumawati N, Rusijono R, Muslim S. Optimization of Slice Thickness, Drying Method, and Temperature of Turmeric Rhizome (Curcuma Longa L.) Based on Water Content and Functional Compound Degradation. Proc. Int. Conf. Sci. Technol., vol. 1, 2018, p. 46–52. https://doi.org/10.2991/icst-18.2018.10.

Eloh K, Koza B, Simalou O, Sanvee S, Bakaï M. Phytochemical analysis, antioxidant potential, and in vitro antidiabetic activity of Grewia lasiodiscus (K Schum) leaves extract. J Herbmed Pharmacol 2024;13:129–36. https://doi.org/10.34172/jhp.2024.48164.

Wahyuni AS, Hakim L, Nurrochmad A, Astuti P. The sinergistic effect of black rice bran extract and glibenclamide on protecting renal, hepatic, and pancreatic cells in alloxan induced rats. IJPR 2020;12:509–17. https://doi.org/10.31838/ijpr/2020.12.01.113.

Wijianto DW, Wahyuni AS, Wardani R, Nugraheni AY, Bakar FIA. Evaluation of the combination of black rice bran ethanol extract and glimepiride in reducing blood glucose and protecting kidney, liver and pancreatic cells. Pak J Pharm Sci 2024;37:307–14. https://doi.org/10.36721/PJPS.2024.37.2.REG.307-314.1.

Fanni D, Manchia M, Lai F, Gerosa C, Ambu R, Faa G. Immunohistochemical Markers of CYP3A4 and CYP3A7: A New Tool towards Personalized Pharmacotherapy of Hepatocellular Carcinoma. Eur J Histochem 2016;60:81–5. https://doi.org/10.4081/ejh.2016.2614.

Yin P, Wang Y, Yang L, Sui J, Liu Y. Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules 2018;23:1046. https://doi.org/10.3390/molecules23051046.

Md Sayem AS, Arya A, Karimian H, Krishnasamy N, Hasamnis AA, Hossain CF. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4) Protein Translocation. Molecules 2018;23. https://doi.org/10.3390/molecules23020258.

Magaki S, Hojat SA, Wei B, So A, Yong WH. An introduction to the performance of immunohistochemistry. Methods Mol Biol 2019;1897:289–98. https://doi.org/10.1007/978-1-4939-8935-5_25.

Tan Y, Cheong MS, Cheang WS. Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food. Oxygen 2022;2:246–68. https://doi.org/10.3390/oxygen2030018.

Susilawati E, Sulaeman A, Muhsinin S, Levita J, Susilawati Y, Adi S. Anti-obesity activity of Erythrina subumbrans (Hassk.) Merr leaves extract in high fructose-induced obesity in Wistar rats 2024;13:120–8. https://doi.org/10.34172/jhp.2024.48159.

Zhong F, Jiang Y. Endogenous pancreatic β cell regeneration: A potential strategy for the recovery of β cell deficiency in diabetes. Front Endocrinol (Lausanne) 2019;10:1–14. https://doi.org/10.3389/fendo.2019.00101.

Son J, Accili D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Exp Mol Med 2023;55:1652–8. https://doi.org/10.1038/s12276-023-01043-8.

Irawan C, Rochaeni H, Sri Lestari P, Sulistiawaty L. Comparison of total phenolic content in seed, flesh fruit and peel of Pometia pinnata from Indonesia. J Med Plants Stud 2017;5:163–5. https://doi.org/https://doi.org/10.22271/plants.

Gangaram S, Naidoo Y, Dewir YH, El-Hendawy S. Phytochemicals and biological activities of barleria (Acanthaceae). Plants 2022;11. https://doi.org/10.3390/plants11010082.

Unuofin JO, Lebelo SL. Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxid Med Cell Longev 2020;2020:1–36. https://doi.org/10.1155/2020/1356893.

Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a major antioxidant: When, what for and why it fails? Antioxidants 2020;9:1–20. https://doi.org/10.3390/antiox9020140.

Muhtadi M, Faroska AA, Suhendi A, Sutrisna E. Antidiabetes activity from combination of Fish powder (Channa striata) and ethanol extract of Rambutan fruit (Nephelium lappaceum) on white male Wistar galur. J Farm Sains Dan Prakt 2018;4:9–14. https://doi.org/10.31603/pharmacy.v4i2.2314.

Wahyuni AS, Muflihah CH, Fadhilah A, Oksaputra AK, Ningrum NFS, Bakhtiar M. Antidiabetic Activity of Matoa Leaves (Pometia pinnata J.R.Forst & G. Forst) Extract on Hyperglycaemic Alloxan-Induced Rats. Indones J Pharm Sci Technol 2023;10:119. https://doi.org/10.24198/ijpst.v10i3.33711

Published

30-08-2024

How to Cite

NIAM1, M. L. Q., APRILIA, S., WAHYUNI, A. S., FORTUNA, T. A., BAKAR, F. I. A., & FADHILAHI, A. (2024). EVALUATING THE EFFECT OF MATOA LEAVES ETHANOL EXTRACTS (POMETIA PINNATA J.R. FORST & G. FORST) ON PANCREATIC Β-CELLS INSULIN RELEASE. International Journal of Applied Pharmaceutics, 16(5). https://doi.org/10.22159/ijap.2024v16s5.52470

Issue

Section

Original Article(s)