LITERATURE STUDY: INTERACTION BETWEEN NATURAL ANTIOXIDANT COMPOUNDS IN TROPICAL FRUITS

Authors

  • ARDITA T. RAHMASARI Nutrition Science Study Program, Faculty of Health Sciences, Universitas Muhammadiyah Surakarta (UMS), Surakarta, Indonesia https://orcid.org/0009-0007-2364-393X
  • PRAMUDYA KURNIA Nutrition Science Study Program, Faculty of Health Sciences, Universitas Muhammadiyah Surakarta (UMS), Surakarta, Indonesia https://orcid.org/0000-0002-9902-7742

DOI:

https://doi.org/10.22159/ijap.2024v16s5.52473

Keywords:

Tropical fruits, Antioxidants, Natural antioxidant interaction

Abstract

Objective: This study aims to analyze selected articles on interactions in binary combinations of vitamin C, phenolic compounds, flavonoids, and carotenoids.

 

Methods: The method used in this research is a literature study approach through the Google Scholar database with the last 10 years (2013 – 2023) of research articles. The selected journals are internationally reputable with Scopus index Q1-Q4 and the results of experimental research.

 

Results: The analysis of the six selected articles showed synergistic interactions in the combination of vitamin C with phenolics, vitamin C with carotenoids, phenolics with flavonoids, phenolics with carotenoids, and flavonoids with carotenoids. However, antagonistic interactions can also occur in some of these combinations and the combination of vitamin C with flavonoids. This is influenced by several factors, such as the type of antioxidant compound derivative, variation in concentration ratio, differences in oxidation potential and antioxidant bond dissociation energy.

 

Conclusion: Overall, binary combinations of antioxidants result in different interactions. This is influenced by several factors. However, the lack of research articles on the combination of these antioxidant binary compounds means that it is not known exactly how the mechanism of interaction in these combinations can occur.

Downloads

Download data is not yet available.

References

Komarayanti, S. Encyclopedia of local fruits based on the natural potential of jember. Journal of biology and biology learning, 2017;2(1). DOI: https://doi.org/10.32528/bioma.v2i1.591.

Hamidah, S. Vegetables and fruits and their health benefits. Yogyakarta: Universitas Negeri Yogyakarta. 2015 Dec.

Sayuti, K. and Yenrina, R. Natural and synthetic antioxidants. Andalas University Press. 2015:67-68.

Lavanya, M., Srinivasan, P., and Padmini, R. Unveiling the anticancer effect of syringic acid and its derivatives in hepatocellular carcinoma. International Journal of Applied Pharmaceutics, 2023 Jul;15(4):114-124. DOI: https://doi.org/10.22159/ijap.2023v15i4.47773

Ravilla, L., Lavanya, M., and Padmini, R. Sustained anticancer effect by naringin- loaded zinc oxide nanoparticles in human lung adenocarcinoma A549 cells. International Journal of Applied Pharmaceutics. 2023 Nov;15(6):315-325. DOI: https://doi.org/10.22159/ijap.2023v15i6.48848

Bhowmik, R., Roy, S., Sengupta, S., and Sharma, S. Biocomputational and pharmacological analysis of phytochemicals from zingiber officinale (ginger), allium sativum (garlic), and murrayakoenigii (curry leaf) in contrast to type 2-diabetes. International Journal of Applied Pharmaceutics. 2021 Sep;13(5):280-286. DOI: https://dx.doi.org/10.22159/ijap.2021v13i5.42294.

Chen, X., Li, H., Zhang, B., and Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Food Science Nutrition. 2022;62(20):5.5658-5.677. DOI: 10.1080/10408398.2021.1888693.

Nagao, T. Treatment of oral leukoplakia with a low-dose of beta-carotene and vitamin c supplement: a randomized controlled trial. Int J Cancer. 2015;136(7):1.708-1.717. DOI: 10.1002/ijc.29156.

Olszowy, M., Dawidowicz, A. L., and Doleba, M. J. Are mutual interactions between antioxidants the only factors responsible for antagonistic antioxidant effects of their mixtures? additive and antagonistic antioxidant effects in mixtures of gallic, ferulic and caffeic acids. European Food Research and Technology. 2019;245:1.473-1.485. DOI: 10.1007/s00217-019-03255-7.

Aoun, M. and Makris, D. P. Use of response surface methodology to evaluate the reducing power in binary solutions of ascorbic acid with natural polyphenolic antioxidants. International Journal of Food Studies. 2013 Oct;2(2). DOI: 10.7455/ijfs/2.2.2013.a9

Jideani, A. I. O., Silungwe, H., Takalani, T., Omolola, A. O., Udeh, H. O., and Anyasi, T. A. Antioxidant-rich natural fruit and vegetable products and human health. Int J Food Prop. 2021 Jan;24(1):41-67. DOI: 10.1080/10942912.2020.1866597.

1. Paull, R. E. and Duarte, O. Tropical fruits. 2nd Ed CABI North America Office, Cambrige; 2011.

Vinha, A. F., Moreira, J., and Barreira, S. V. P. Physicochemical parameters, phytochemical composition and antioxidant activity of the algarvian avocado (Persea americana Mill.). Journal of Agricultural Science. 2013; 5(12):100-109. DOI: 10.5539/jas.v5n12p100.

Addai, A. Z. R., Abdullah, Mutalib, S. A., Musa, K. H., and Douqan, E. M. A.. Antioxidant activity and physicochemical properties of mature papaya fruit (Carica papaya L. cv. Eksotika). Advance Journal of Food Science and Technology. 2013;5(7):859-865. DOI: 10.19026/ajfst.5.3173.

Cresna, Napitulu, M., and Ratman. Analysis of vitamin c in papaya, soursop, srikaya, and langsat fruits grown in Donggala Regency Palu, Indonesia. Jurnal Akademika Kimia. 2014;3(4):121-128. ISSN 2302-6030.

Khosa, M. K.,Chatha, S. A. S.,Hussain, A. I. Zia, K. M. Riaz, H., and Aslam, K. Spectrophotometric quantification of actioxidant phytochemicals in juices from four different varieties of citrus limon, indigenous to Pakistan. Journal of The Chemical Society of Pakistan. 2011;33(2):188. ISSN 0253-5106.

Zandkarimi, H., Talaie, A., and Fatahi, R. Evaluation of cultivated lime and lemon cultivars in southern iram for some biochemical compounds. Food. 2011 Aug;5(1):84-88.

Al-Juhaimi, F. Y. Citrus fruits by-products as sources of bioactive compounds with antioxidant potential. Pak J Bot. 2014;46(4):1.459-1.462.

Surlitah, S., Setiawan, B., and Briawan, D. Improvement of lipid profile in overweight adult women after citrus kalamansi (Citrus microcarp) juice intervention. Journal of Food Nutrition. 2017 Jul;12(2):93-100. DOI: 10.25182/jgp.2017.12.2.93-100.

Fidrianny, I., Sefiany, E., and Ruslan, K. In-Vitro antioxidant activities from three organs of white ambon banana (Musa AAA Group) and flavonoid, phenolic, carotenoid content. Int J. of Pharmacognosy and Phytochemical Research. 2015;7(3):590-596.

Mahardika, N. P. and Zuraida, R. Vitamin C in ambon banana (Musa paradisiaca S.) and deficiency anemia. Majority. 2016 Oct;5(4):124-127.

Tudor-Radu, M., Vijan, L. E., Tudor-Radu, C. M., Tita, I., Sima, R., and Mitrea, R. Assessment of ascorbic acid, polyphenols, flavonoids, anthocyanins and carotenoids content in tomato fruits. Not Bot Horti Agrobot Cluj Napoca. 2016 Dec;44(2):477- 483. DOI: 10.15835/nbha44210332.

Adiyaman, P., Kanchana, Usharani, T., Ilaiyaraja, N., Kalaiselvan, A., and Anila, K. K. R.. Identification and quantification of polyphenolic compounds in underutilized fruits (star fruit and egg fruit) using HPLC. Indian Journal of Traditional Knowledge. 2016 Jul;15(3):487-493.

Halimah, G., Devi, M., and Issutarti, I. Effect of pasteurization temperature on color, vitamin c and betacarotene content of pineapple starfruit juice. Journal of Technology Innovation and Engineering Education. 2021 Jun;1(3):162-168. DOI: 10.17977/UM068v1n3p162-168.

Cortez-Trejo, M. C. Potential Anticancer activity of pomegranate (Punica granatum L.) fruits of different color: in vitro and in silico evidence. Biomolecules. 2022 Nov;12(11). DOI: 10.3390/biom12111649.

Assous, M. T. M., Saad, E. M. S., and Dyab, A. S. Enhancement of quality attributes of canned pumpkin and pineapple. Annals of Agricultural Sciences. 2014 Jun;59(1):9- 15. DOI: 10.1016/j.aoas.2014.06.002.

Dominguez, C. R. Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv. Esmeralda. Journal of Applied Botany and Food Quality. 2018;91:61-68. DOI: https://doi.org/10.5073/JABFQ.2018.091.009.

Del'Arco, A. P. W. T. and de Sylos, C. M. Effect of industrial processing for obtaining guava paste on the antioxidant compounds of guava (Psidium guajava l.) 'Paluma' cv. Rev Bras Frutic. 2018 Apr;40(2). DOI: 10.1590/0100-29452018011.

Leite Neta, M. T. S. Effect of spray drying on bioactive and volatile compounds in soursop (Annona muricata) fruit pulp. Food Research International. 2019 Oct;124:70-77. DOI: 10.1016/j.foodres.2018.09.039.

Olale, K., Walyambillah, W., Mohammed, S. A., Sila, A., and Shepherd, K. FTIR-DRIFTS- Based prediction of β-carotene, α-tocopherol and l-ascorbic acid in mango (Mangifera Indica L.) fruit pulp. SN Appl Sci. 2019 Mar;1(3). DOI: 10.1007/s42452-019-0297-7.

Oliveira, L. M. N. Characterization of rutin, phenolic compounds and antioxidant capacity of pulps and by-products of tropical fruits. Research, Society and Development. 2020 Mar;9(4). DOI: 10.33448/rsd-v9i4.2812.

Recuenco, M. C., Lacsamana, M. S., Hurtada, W. A., and Sabularse, V. C. Total phenolic and total flavonoid contents of selected fruits in the philipines. Philipp J Sci. 2016 Sep;145(3):275-281.

Lal, N., Sahu, N., Jayswal, D. K., Diwan, G., and Tandon, K. Traditional, medicinal, and nutraceutical values of minor fruit: longan. Current Journal of Applied Science and Technology. 2020;39(41):59-70. DOI: 10.9734/cjast/2020/v39i4131120.

Ashraf, M. A., Maah, M. J., and Yusoff, I. Estimation of antioxidant phytochemicals in four different varities of durian (Durio zibethinus murray) fruit. Middle-East Journal of Scientific Research. 2010;6(5):465-471.

Juarah, N., Surugau, N., Rusdi, N. A., Abu-Bakar, M. F., and Suleiman, M. Phytochemical content and antioxidant properties of Bornean wild durian from Sabah. IOP Conf Ser Earth Environ Sci. 2021 Apr;736(1). DOI: 10.1088/1755-1315/736/1/012030.

Weber, D. Bioactive content of six passion fruit genotypes cultivated in southern Brazil. Bioscience Journal. 2021 Dec;37. DOI: 10.14393/BJ-v37n0a2021-54096.

Phomkong, W., Wachum, M., and Inree, R. Quality jackfruit syrup using different jackfruit varities. Journal of Science and Technology. 2015 Aug;17(2).

Chaves-Santiago, J. O. Phenolic content, antioxidant and antifungal activity of jackfruit extracts (Artocarpus heterophyllus Lam.). Food Science and Technology. 2022;42. DOI: 10.1590/fst.02221.

Suksamran, N. Mangosteen vinegar from garcinia mangostana: quality improvement and antioxidant properties. Heliyon. 2022 Dec;8(12). DOI: 10.1016/j.heliyon.2022.e11943.

Suriati, L. Evaluation of the quality of fresh-cut mango, mangosteen, and rambutan under cold storage. Journal of Agriculture and Crops. 2022 Nov;91:62-69. DOI: 10.32861/jac.91.62.69.

Feladita, N., Primadiamanti, A., and Antika, D. Y. Effect of storage temperature on vitamin c content of watermelon (Citrullus vullgaris, Schand) red flesh and yellow flesh iodometrically. Journal of Pharmaceutical Analyst. 2018;3(4):286-293.

Bazié, D. Nutraceutical potential of the pulp of five cultivars of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] grown in Burkina Faso. Int J Food Prop. 2022 Dec;25(1):1848-1861. DOI: 10.1080/10942912.2022.2111441.

Thitilertdecha, N. Storage effect on phenolic compounds and antioxidant activity of nephelium lappaceum l. extract. Cosmetics. 2022 Mar;9(2). DOI: 10.3390/cosmetics9020033.

Rahmawati, B. and Mahajoeno, E. Variation of morphology, isozymic and vitamin c content of dragon fruit varieties. Nusantara Bioscience. 2009 Sep;1(3):131-137. DOI: 10.13057/nusbiosci/n010305.

Nishikito, D. F. Anti-inflammatory, antioxidant, and other health effects of dragon fruit and potential delivery systems for its bioactive compounds. Pharmaceutics. Jan 2023;15(1). DOI: 10.3390/pharmaceutics15010159.

Vermerris, W. and Nicholson, R. Phenolic compounds and their effects on human health. phenolic compound biochemistry. Dordrecht: Springer Netherlands. 2006:235-255. DOI: 10.1007/978-1-4020-5164-7_7.

2. Crozier, A., Clifford, M. N., and Ashihara, H. Plant secondary metabolites: occurrence, structure, and role in the human diet. 1st ed Blackwell Publishing Ltd. 2006.

3. Syukuri, D. Basic Knowledge of carotenoid compounds as raw materials for the production of processed agricultural products. 1st ed. Padang: Andalas University Press, 2021.

Zhang, J. Y. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules. 2015 Jun;20(6):11524-11534. DOI: 10.3390/molecules200611524.

Dangles, O., Borel, P., and Caris-Veyrat, C. Interactions between carotenoids from marine bacteria and other micronutrients: impact on stability and antioxidant activity. Mar Drugs. 2015 Nov;13(11):7020-7039. DOI: 10.3390/md13117020.

Levy, R., Okun, Z., and Shpigelman, A. The influence of chemical structure and the presence of ascorbic acid on anthocyanins stability and spectral properties in purified model systems. Foods. 2019 Jun;8(6):207. DOI: 10.3390/foods8060207.

Singprecha, A., Yarovaya, L., and Khunkitti, W. The interaction effect of ginger extract and ascorbic acid on antioxidant activity. Journal of Science and Technology. 2020 Jul;42(4):850-857. DOI: 10.14456/sjst-psu.2020.109.

Oh, S., Kim, Y. J., Lee, E. K., Park, S. W., and Yu, H. G. Antioxidative effects of ascorbic acid and astaxanthin on ARPE-19 cells in an oxidative stress model. Antioxidants. 2020 Sep;9(9):833. DOI: 10.3390/antiox9090833.

Chen, X., Zheng, L., Zhang, B., Deng, Z., and Li, H. Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cells. Curr Res Food Sci. 2022;5:1985-1993. DOI: 10.1016/j.crfs.2022.10.018.

Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y., Proulx, A., and Tsao, R.. In Vitro antioxidant synergism and antagonism between food extracts can lead to similar activities in H2O2-induced cell death, caspase-3 and MMP-2 activities in H9c2 cells. J Sci Food Agric. 2012 Dec;92(15):2983-2993. DOI: 10.1002/jsfa.5711.

Choueiri, L., Chedea, V. S., Calokerinos, A., and Kefalas, P. Antioxidant/pro-oxidant properties of model phenolic compounds. Part II: Studies on mixtures of polyphenols at different molar ratios by chemiluminescence and LC-MS. Food Chem. 2012 Aug;133(3):1039-1044. DOI: 10.1016/j.foodchem.2012.01.057.

Naksuriya, O. and Okonogi, S. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone. Drug Discov Ther. 2015;9(2):136-141. DOI: 10.5582/ddt.2015.01013.

Engelhardt, L., Pöhnl, T., and Neugart, S. Interactions of ascorbic acid, 5-caffeoylquinic acid, and quercetin-3-rutinoside in the presence and absence of iron during thermal processing and the influence on antioxidant activity. Molecules. 2021 Dec;26(24):7698. DOI: 10.3390/molecules26247698.

Farr, J. and Giusti, M. Investigating the interaction of ascorbic acid with anthocyanins and pyranoanthocyanins. Molecules. 2018 Mar;23(4)744. DOI: 10.3390/molecules23040744.

Safitri, W. and Agustin, W. R. The effect of giving soy milk and ginger on reducing cholestrol levels of Ngargoyoso Karanganyar residents. Edunursing Journal. 2018;2(1): 1-7.

Abou Samra, M., Chedea, V. S., Economou, A., Calokerinos, A., and Kefalas, P. Antioxidant/prooxidant properties of model phenolic compounds: part i. studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chem. 2011 Mar;125(2):622-629. DOI: 10.1016/j.foodchem.2010.08.076.

Guerra, B. A., Bolin, A. P., and Otton, R. Carbonyl stress and a combination of astaxanthin/vitamin c induce biochemical changes in human neutrophils. Toxicology in Vitro. 2012 Oct;26(7):1181-1190. DOI: 10.1016/j.tiv.2012.06.010.

Hazewindus, M., Haenen, M., Weseler, A. R., and Bast, A. Protection against chemotaxis in the anti-inflammatory effect of bioactives from tomato ketchup. PLoS One. 2014 Dec;9(12). DOI: 10.1371/journal.pone.0114387.

Burz, C., Berindan-Neagoe, I., Balacescu, O., and Irimie, A. Apoptosis in cancer: key molecular signaling pathways and therapy targets. acta oncol (madr). 2009 Jan;48(6):811-821. DOI: 10.1080/02841860902974175.

Aggarwal, B. B., Surh, Y. J., and Shishodia, S. The Molecular targets and therapeutic uses of curcumin in health and disease. 2007;595. DOI: 10.1007/978-0-387-46401-5.

Yang, K. Y., Lin, L. C., Tseng, T. Y., Wang, S. C., and Tsai, T. H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. Journal of Chromatography B. 2007 Jun;853(1-2):183-189. DOI: 10.1016/j.jchromb.2007.03.010.

Kim, H. G. The increased cellular uptake and biliary excretion of curcumin by quercetin: a possible role of albumin binding interaction. Drug Metabolism and Disposition. 2021 Aug;40(8):1452-1455. DOI: 10.1124/dmd.111.044123.

Hajimehdipoor, H., Shahrestani, R., and Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Research Journal of Pharmacognosy. 2014 Feb;1(3):35-40.

Rutkowska, M., Olszewska, M. A., Kolodziejczyk-Czepas, J., Nowak, P.. and Owczarek, A. Sorbus domestica leaf extracts and their activity markers: antioxidant potential and synergy effects in scavenging assays of multiple oxidants. Molecules. 2019 Jun;24(12):2289. DOI: 10.3390/molecules24122289.

Vijayalakshmi, G., Adinarayana, M., and Rao, J. P. A synergstic approach to kinetic and mechanistic studies of regenetaion of β-carotene from tert-butoxyl radical induced β- carotene radical catin by chlorogenic acid. Int J Pharm Sci Res. 2014;5(3):942- 950. DOI: http://dx.doi.org/10.13040/IJPSR.0975-8232.5(3).942-50

Choe, E. and Min, D. B. Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Food Saf. 2009 Oct; 8(4):345-358. DOI: https://doi.org/10.1111/j.1541-4337.2009.00085.x

Calniquer, G. Combined effects of carotenoids and polyphenols in balancing the response of skin cells to UV irradiation. Molecules. 2021 Mar;26(7):1931. DOI: 10.3390/molecules26071931.

Dharmajaputra, G. B., Sokawati, N. D. A. K., Aris, N. W. M., Putra, G. N. A., Vedanta, I. G. D., and Mahendra, A. N. In vivo study of turmeric (Curcuma Domestica Val.) ethanol extract as a nox4 targeted nephroprotector in hypercholesterolemia model. E-Journal Medika Udayana. 2022 Jun;11(6):44. DOI: 10.24843/MU.2022.V11.i6.P09.

Zhang, Z., Shen, Q., Wu, X., Zhang, D., and Xing, D. Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces aβ levels in alzheimer's disease models. Aging Cell. 2020 Jan;19(1). DOI: 10.1111/acel.13054.

Han, G., Zhang, S., Marshall, D. J., Ke, C., and Dong, Y. Metabolic energy sensors (AMPK and SIRT1), protein carbonylation, and cardiac failure as biomarkers of thermal stress in an intertidal limpet: linking energetic allocation with environmental temperature during aerial emersion. Journal of Experimental Biology. 2013 Sep 1;216(17):3273-3282. DOI: 10.1242/jeb.084269.

Beutner, S., Frixel, S., Ernst, H., and Hoffmann, T. Carotenylflavonoids, a novel group of potent, dual-functional antioxidants. Arkivoc. 2007 Apr;8:1-6. DOI: 10.3998/ark.5550190.0008.801.

Liu, C. Effects of α-tocopherol, β-carotene and epigallocatechin gallate on the oxidative stability of sunflower oil. J Oleo Sci. 2023;72(5). DOI: 10.5650/jos.ess22348.

Zhang, L., Liao, W., Wang, Y., Tong, Z., Li, Q., and Gao, Y. Thermal-induced impact on physicochemical property and bioaccessibility of β-carotene in aqueous suspensions fabricated by wet-milling approach. Food Control. 2022 Nov;141:109155. DOI: 10.1016/j.foodcont.2022.109155/.

Published

30-08-2024

How to Cite

RAHMASARI, A. T., & KURNIA, P. (2024). LITERATURE STUDY: INTERACTION BETWEEN NATURAL ANTIOXIDANT COMPOUNDS IN TROPICAL FRUITS. International Journal of Applied Pharmaceutics, 16(5). https://doi.org/10.22159/ijap.2024v16s5.52473

Issue

Section

Original Article(s)