THE EFFECT OF KNOCKING OUT OF PVDP GENE IN THE VIRULENCE OF PSEUDOMONAS AERUGINOSA
DOI:
https://doi.org/10.22159/ijap.2024v16s5.52485Keywords:
Iron, P. aeruginosa, Pyoverdine, PvdP, Virulence factor, Biofilm, G. mellonellaAbstract
Objective: The aim of the study is to investigate the role of PvdP enzyme in the virulence of Pseudomonas aeruginosa both in vitro and in vivo.
Methods: In this study, we investigate the effect of deletion of pvdP gene on P. aeruginosa by observing its phenotypes. The observed phenotypes are the growth, pyoverdine production, motilities, 3-oxo-C12-Homo Serine Lactone (3-oxo-C12-HSL) accumulation and biofilm formation. The growth and pyoverdine production were investigated under a low iron condition, while the motilities of the mutant were investigated in a semi-solid media. The accumulation 3-oxo-C12-HSL was facilitated by a biosensor strain and biofilm formation was investigated using a spectrophotometer through a crystal violet staining method. The in vivo study was performed to Galleria mellonella larvae as an infection model.
Results: The deletion of the pvdP gene does not affect the growth of the P. aeruginosa but significantly reduces the production of pyoverdine. The motility properties of the bacteria were not affected by the deletion of the pvdP gene. The P. aeruginosa PvdP knock-out mutant also showed a reduction in the biofilm formation and the accumulation of 3-oxo-C12-HSL at low iron concentrations. In an in vivo experiment, the PvdP knock-out mutant caused a significantly reduced death rate of G. mellonella larvae infection model compared to the control group.
Conclusion: The findings underscore the major role of PvdP in pyoverdine production, its contribution to biofilm formation, and the motility of P. aeruginosa. Those results confirm the important role of PvdP in the virulence of P. aeruginosa in vitro and in vivo.
Downloads
References
Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun. 2013 Aug;81(8):2697-704. doi: 10.1128/IAI.00418-13, PMID 23690396.
Breidenstein EB, DE LA Fuente Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419-26. doi: 10.1016/j.tim.2011.04.005, PMID 21664819.
Visca P, Imperi F, Lamont IL. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 2007;15(1):22-30. doi: 10.1016/j.tim.2006.11.004, PMID 17118662.
Gessard C. On the blue and green coloration that appears on bandages. Clinical Infectious Diseases. 1984;6Suppl3:S775-6. doi: 10.1093/clinids/6.Supplement_3.S775.
Cox CD. Effect of pyochelin on the virulence of pseudomonas aeruginosa. Infect Immun. 1982;36(1):17-23. doi: 10.1128/iai.36.1.17-23.1982, PMID 6804387.
Schalk IJ, Guillon L. Pyoverdine biosynthesis and secretion in pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol. 2013;15(6):1661-73. doi: 10.1111/1462-2920.12013, PMID 23126435.
Nadal Jimenez P, Koch G, Reis CR, Muntendam R, Raj H, Jeronimus Stratingh CM. PVDP is a tyrosinase that drives maturation of the pyoverdine chromophore in pseudomonas aeruginosa. J Bacteriol. 2014;196(14):2681-90. doi: 10.1128/JB.01376-13, PMID 24816606.
Ringel MT, Drager G, Bruser T. PVDO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in pseudomonas fluorescens. J Biol Chem. 2018;293(7):2330-41. doi: 10.1074/jbc.RA117.000121, PMID 29208656.
Ringel MT, Drager G, Bruser T. PVDN enzyme catalyzes a periplasmic pyoverdine modification. J Biol Chem. 2016;291(46):23929-38. doi: 10.1074/jbc.M116.755611, PMID 27703013.
Ringel MT, Drager G, Bruser T. The periplasmic transaminase PtaA of pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid. J Biol Chem. 2017;292(45):18660-71. doi: 10.1074/jbc.M117.812545, PMID 28912270.
Yeterian E, Martin LW, Lamont IL, Schalk IJ. An efflux pump is required for siderophore recycling by pseudomonas aeruginosa. Environ Microbiol Rep. 2010 Jun;2(3):412-8. doi: 10.1111/j.1758-2229.2009.00115.x, PMID 23766114.
Hannauer M, Yeterian E, Martin LW, Lamont IL, Schalk IJ. An efflux pump is involved in secretion of newly synthesized siderophore by pseudomonas aeruginosa. FEBS Lett. 2010;584(23):4751-5. doi: 10.1016/j.febslet.2010.10.051, PMID 21035449.
Wibowo JP, Batista FA, Van Oosterwijk N, Groves MR, Dekker FJ, Quax WJ. A novel mechanism of inhibition by phenylthiourea on PVDP a tyrosinase synthesizing pyoverdine of pseudomonas aeruginosa. Int J Biol Macromol. 2020 Mar;146:212-21. doi: 10.1016/j.ijbiomac.2019.12.252, PMID 31899238.
Lamont IL, Martin LW. Identification and characterization of novel pyoverdine synthesis genes in pseudomonas aeruginosa. Microbiology (Reading). 2003;149(4):833-42. doi: 10.1099/mic.0.26085-0, PMID 12686626.
Jimenez PN, Koch G, Papaioannou E, Wahjudi M, Krzeslak J, Coenye T. Role of PVDQ in pseudomonas aeruginosa virulence under iron limiting conditions. Microbiology (Reading). 2010;156(1):49-59. doi: 10.1099/mic.0.030973-0, PMID 19778968.
Filloux A, Ramos JL. Preface pseudomonas methods and protocols. Methods Mol Biol. 2014;1149. doi: 10.1007/978-1-4939-0473-0, PMID 24936603.
Niranjana ES, Sambath Kumar R, Sudha M, Venkateswaramurthy N. Review on clinically developing antibiotics. Int J App Pharm. 2018 May;10(3):13-8. doi: 10.22159/ijap.2018v10i3.22668.
Neela S, Ajitha M, Kuchana V. Formulation and assessment of herbal emulgels in the management of acne: in vitro and in vivo investigations. Int J App Pharm. 2024 Jan;16(1):51-60. doi: 10.22159/ijap.2024v16i1.49671.
Odhar HA, Hashim AF, Ahjel SW, Humadi SS. Virtual screening of FDA-approved drugs by molecular docking and dynamics simulation to recognize potential inhibitors against mycobacterium tuberculosis enoyl acyl carrier protein reductase enzyme. Int J App Pharm. 2024 Jan;16(1):261-6. doi: 10.22159/ijap.2024v16i1.49471.
Caiazza NC, Shanks RM, O Toole GA. Rhamnolipids modulate swarming motility patterns of pseudomonas aeruginosa. J Bacteriol. 2005 Nov;187(21):7351-61. doi: 10.1128/JB.187.21.7351-7361.2005, PMID 16237018.
Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K. Influence of quorum sensing and iron on twitching motility and biofilm formation in pseudomonas aeruginosa. J Bacteriol. 2008 Jan;190(2):662-71. doi: 10.1128/JB.01473-07, PMID 17993517.
Banin E, Vasil ML, Greenberg EP. Iron and pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA. 2005;102(31):11076-81. doi: 10.1073/pnas.0504266102, PMID 16043697.
Utari PD, Setroikromo R, Melgert BN, Quax WJ. PVDQ quorum quenching acylase attenuates pseudomonas aeruginosa virulence in a mouse model of pulmonary infection. Front Cell Infect Microbiol. 2018 Apr 26;8:119. doi: 10.3389/fcimb.2018.00119, PMID 29755959.
Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000 Oct;407(6805):762-4. doi: 10.1038/35037627, PMID 11048725.
Hentzer M, Eberl L, Givskov M. Transcriptome analysis of pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms. 2005 Jan;2(1):37-61. doi: 10.1017/S1479050505001699.
Thomas RJ, Hamblin KA, Armstrong SJ, Muller CM, Bokori Brown M, Goldman S. Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against burkholderia pseudomallei. Int J Antimicrob Agents. 2013 Apr;41(4):330-6. doi: 10.1016/j.ijantimicag.2012.12.009, PMID 23402703.
Published
How to Cite
Issue
Section
Copyright (c) 2024 JOKO P. WIBOWO, FRANK J. DEKKER, WIM J. QUAX
This work is licensed under a Creative Commons Attribution 4.0 International License.