THE EFFECT OF KNOCKING OUT OF PVDP GENE IN THE VIRULENCE OF PSEUDOMONAS AERUGINOSA
DOI:
https://doi.org/10.22159/ijap.2024v16s5.52485Keywords:
Iron, P. aeruginosa, Pyoverdine, PvdP, Virulence factor, Biofilm, G. mellonellaAbstract
Objective: The aim of the study is to investigate the role of PvdP enzyme in the virulence of Pseudomonas aeruginosa both in vitro and in vivo.
Methods: In this study, we investigate the effect of deletion of pvdP gene on P. aeruginosa by observing its phenotypes. The observed phenotypes are the growth, pyoverdine production, motilities, 3-oxo-C12-Homo Serine Lactone (3-oxo-C12-HSL) accumulation and biofilm formation. The growth and pyoverdine production were investigated under a low iron condition while the motilities of the mutant were investigated in a semi solid media. The accumulation 3-oxo-C12-HSL was facilitated by a biosensor strain and biofilm formation was investigated using a spectrophotometer through a crystal violet staining method. The in vivo study was performed to Galleria mellonella larvae as an infection model.
Results: The deletion of the pvdP gene does not affect the growth of the P. aeruginosa but significantly reduces the production of pyoverdine. The motility properties of the bacteria were not affected by the deletion of the pvdP gene. The P. aeruginosa PvdP knock-out mutant also showed a reduction in the biofilm formation and the accumulation of 3-oxo-C12-HSL at low iron concentrations. In an in vivo experiment, the PvdP knock-out mutant caused a significantly reduced death rate of G. mellonella larvae infection model compared to the control group.
Conclusion: The findings underscore the major role of PvdP in pyoverdine production, its contribution to biofilm formation, and the motility of P. aeruginosa. Those results confirm the important role of PvdP in the virulence of P. aeruginosa in vitro and in vivo
Downloads
References
A. F. Konings et al., “Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs,” Infect Immun, vol. 81, no. 8, pp. 2697–2704, Aug. 2013, doi: 10.1128/IAI.00418-13.
E. B. M. Breidenstein, C. de la Fuente-Núñez, and R. E. W. Hancock, “Pseudomonas aeruginosa: All roads lead to resistance,” Trends in Microbiology, vol. 19, no. 8. pp. 419–426, Aug. 01, 2011. doi: 10.1016/j.tim.2011.04.005.
P. Visca, F. Imperi, and I. L. Lamont, “Pyoverdine siderophores: from biogenesis to biosignificance,” Trends Microbiol, vol. 15, no. 1, pp. 22–30, 2007, doi: 10.1016/j.tim.2006.11.004.
C. Gessard, “On the Blue and Green Coloration that Appears on Bandages,” Rev Infect Dis, vol. 6, no. Supplement_3, pp. S775–S776, Sep. 1984, doi: 10.1093/CLINIDS/6.SUPPLEMENT_3.S775.
C. D. Cox, “Effect of pyochelin on the virulence of Pseudomonas aeruginosa,” Infect Immun, vol. 36, no. 1, pp. 17–23, 1982.
I. J. Schalk and L. Guillon, “Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis,” Environ Microbiol, vol. 15, no. 6, pp. 1661–1673, 2013, doi: 10.1111/1462-2920.12013.
P. Nadal-Jimenez et al., “PvdP is a tyrosinase that drives maturation of the pyoverdine chromophore in Pseudomonas aeruginosa,” J Bacteriol, vol. 196, no. 14, pp. 2681–2690, 2014, doi: 10.1128/JB.01376-13.
M. T. Ringel, G. Dräger, and T. Brüser, “PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescens,” Journal of Biological Chemistry, vol. 293, no. 7, pp. 2330–2341, 2018, doi: 10.1074/jbc.RA117.000121.
M. T. Ringel, G. Dräger, and T. Brüser, “PvdN enzyme catalyzes a periplasmic pyoverdine modification,” Journal of Biological Chemistry, vol. 291, no. 46, pp. 23929–23938, 2016, doi: 10.1074/jbc.M116.755611.
M. T. Ringel, G. Dräger, and T. Brüser, “The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to -ketoglutaric acid,” Journal of Biological Chemistry, vol. 292, no. 45, pp. 18660–18671, 2017, doi: 10.1074/jbc.M117.812545.
E. Yeterian, L. W. Martin, I. L. Lamont, and I. J. Schalk, “An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa,” Environ Microbiol Rep, vol. 2, no. 3, pp. 412–418, Jun. 2010, doi: 10.1111/j.1758-2229.2009.00115.x.
M. Hannauer, E. Yeterian, L. W. Martin, I. L. Lamont, and I. J. Schalk, “An efflux pump is involved in secretion of newly synthesized siderophore by Pseudomonas aeruginosa,” FEBS Lett, vol. 584, pp. 4751–4755, 2010, doi: 10.1016/j.febslet.2010.10.051.
J. P. Wibowo, F. A. Batista, N. van Oosterwijk, M. R. Groves, F. J. Dekker, and W. J. Quax, “A novel mechanism of inhibition by phenylthiourea on PvdP, a tyrosinase synthesizing pyoverdine of Pseudomonas aeruginosa,” Int J Biol Macromol, vol. 146, pp. 212–221, Mar. 2020, doi: 10.1016/j.ijbiomac.2019.12.252.
I. L. Lamont and L. W. Martin, “Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa,” Microbiology (N Y), vol. 149, pp. 833–842, 2003, doi: 10.1099/mic.0.26085-0.
P. Nadal-Jimenez et al., “Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions,” Microbiology (N Y), vol. 156, no. 1, pp. 49–59, 2010, doi: 10.1099/mic.0.030973-0.
G. Koch, P. N. Jimenez, R. H. Cool, and W. J. Quax, “Assessing Pseudomonas Virulence with Nonmammalian Host: Galleria mellonella,” in Pseudomonas Methods and Protocols, Methods in Molecular Biology, vol. 1149, A. Folloux and J.-L. Ramos, Eds., New York: Humana Press, 2014, pp. 681–688. doi: 10.1007/978-1-4939-0473-0.
E. S. Niranjana, R. Sambath Kumar, M. Sudha, and N. Venkateswaramurthy, “Review on clinically developing antibiotics,” International Journal of Applied Pharmaceutics, vol. 10, no. 3, pp. 13–18, May 2018, doi: 10.22159/ijap.2018v10i3.22668.
S. Neela, M. Ajitha, and V. Kuchana, “Formulation and Assessment of Herbal Emulgels in the Management Of Acne: In Vitro And In Vivo Investigations,” International Journal of Applied Pharmaceutics, vol. 16, no. 1, pp. 51–60, Jan. 2024, doi: 10.22159/ijap.2024v16i1.49671.
H. A. Odhar, A. F. Hashim, S. W. Ahjel, and S. S. Humadi, “Virtual Screening of FDA-Approved Drugs by Molecular Docking and Dynamics Simulation to Recognize Potential Inhibitors Against Mycobacterium Tuberculosis Enoyl-Acyl Carrier Protein Reductase Enzyme,” International Journal of Applied Pharmaceutics, vol. 16, no. 1, pp. 261–266, Jan. 2024, doi: 10.22159/ijap.2024v16i1.49471.
N. C. Caiazza, R. M. Q. Shanks, and G. A. O’Toole, “Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa,” J Bacteriol, vol. 187, no. 21, pp. 7351–7361, Nov. 2005, doi: 10.1128/JB.187.21.7351-7361.2005.
G. M. Patriquin, E. Banin, C. Gilmour, R. Tuchman, E. P. Greenberg, and K. Poole, “Influence of Quorum Sensing and Iron on Twitching Motility and Biofilm Formation in Pseudomonas aeruginosa,” J Bacteriol, vol. 190, no. 2, pp. 662–671, Jan. 2008, doi: 10.1128/JB.01473-07.
E. Banin, M. L. Vasil, and E. P. Greenberg, “Iron and Pseudomonas aeruginosa biofilm formation,” PNAS, vol. 102, no. 31, pp. 11076–11081, 2005.
P. D. Utari, R. Setroikromo, B. N. Melgert, and W. J. Quax, “PvdQ quorum quenching acylase attenuates Pseudomonas aeruginosa virulence in a mouse model of pulmonary infection,” Front Cell Infect Microbiol, vol. 8, pp. 1–12, 2018, doi: 10.3389/fcimb.2018.00119.
P. K. Singh, A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh, and E. P. Greenberg, “Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms,” Nature, vol. 407, no. 6805, pp. 762–764, Oct. 2000, doi: 10.1038/35037627.
M. Hentzer, L. Eberl, and M. Givskov, “Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation,” Biofilms, vol. 2, no. 1, pp. 37–61, Jan. 2005, doi: 10.1017/S1479050505001699.
R. J. Thomas et al., “Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei,” Int J Antimicrob Agents, vol. 41, no. 4, pp. 330–336, Apr. 2013, doi: 10.1016/j.ijantimicag.2012.12.009
Published
How to Cite
Issue
Section
Copyright (c) 2024 JOKO P. WIBOWO, FRANK J. DEKKER, WIM J. QUAX
This work is licensed under a Creative Commons Attribution 4.0 International License.