FOURIER TRANSFORM INFRARED SPECTROSCOPY AND CHEMOMETRICS FOR AUTHENTICATING CHILI POWDER FROM RHODAMINE B, ERYTHROSINE B, AND PARARED

Authors

  • STEFFY TINDA ADISTI Department of Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto-53182, Indonesia. Rumah Sakit Umum Daerah Dr. Soeselo, Jl. Dr. Sutomo No. 63, Slawi, Jawa Tengah-52419, Indonesia
  • WIRANTI SRI RAHAYU Department of Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto-53182, Indonesia
  • PRI ISWATI UTAMI Department of Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto-53182, Indonesia
  • ASMIYENTI DJALIASRIN DJALIL Department of Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto-53182, Indonesia

DOI:

https://doi.org/10.22159/ijap.2024.v16s6.TY2006

Keywords:

Authentication, Chemometrics, Chili powder, FTIR spectroscopy, Synthetic dyes

Abstract

Objective: The purpose of this study was to identify chili powder adulteration with synthetic dyes of rhodamine B, erythrosine B, and parared using Fourier Transform Infrared (FTIR) spectroscopy and chemometrics.

Methods: The analysis included two types of red chilies, curly red and big red chilies. FTIR and chemometric spectroscopy combination were used to detect synthetic dyes in the chili powders. Principal Component Analysis (PCA), Partial Least Square-Discriminant Analysis (PLS-DA), and Partial Least Square-Regression (PLS-R) methods were applied.

Results: The FTIR spectrum in the range of 700-850, 1100-1700, and 2300-3500 cm-1 can detect the adulteration of chili powder with rhodamine B or erythrosine B. Meanwhile, the parared dye can be distinguished at wave numbers of 2000-3000 cm-1.

Conclusion: The combination of FTIR spectroscopy with chemometrics can be used to authenticate red chili powder from rhodamine B, erythrosine B, and parared.

Downloads

Download data is not yet available.

References

Ullah A, Chan MW, Aslam S, Khan A, Abbas Q, Ali S. Banned sudan dyes in spices available at markets in Karachi Pakistan. Food Addit Contam Part B Surveill. 2023;16(1):69-76. doi: 10.1080/19393210.2022.2100489, PMID 35909386.

Putriningtyas ND, Wijanarka A, Ripaldy I. Analisis kandungan rhodamin B pada cabai merah giling DI pasar tradisional DI kabupaten sleman daerah istimewa Yogyakarta. Ilmu Gizi Indonesia. 2017;1(1):10-8. doi: 10.35842/ilgi.v1i1.8.

LI C, WU YL, Shen JZ. UPLC-ESI-MS/MS analysis of sudan dyes and para red in food. Food Addit Contam Part a Chem Anal Control Expo Risk Assess. 2010;27(9):1215-20. doi: 10.1080/19440049.2010.483600, PMID 20582780.

Djarismawati S, Nainggolan R. Pengetahuan dan perilaku pedogang cabe merah giling dalam penggunaan rhodamine B DI pasar tradisional DI DKI jakarta. J Ekol Kesehat. 2005;3(1):7-12.

Yuliarti N. Awas bahaya di balik lezatnya makanan. Yogyakarta: Andi; 2007.

EF. SA. “Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) to review the toxicology of a number of dyes illegally present in food in the EU.” EFSA J. 2005 Sep;3(9):263. doi: 10.2903/j.efsa.2005.263.

Furumiya K, Mizutani T. Inhibition of human CYP3A4 UGT1A6 and P-glycoprotein with halogenated xanthene food dyes and prevention by superoxide dismutase. J Toxicol Environ Health A. 2008;71(19):1307-13. doi: 10.1080/15287390802240751, PMID 18686201.

Ganesan L, Margolles Clark E, Song Y, Buchwald P. The food colorant erythrosine is a promiscuous protein-protein interaction inhibitor. Biochem Pharmacol. 2011 Mar;81(6):810-8. doi: 10.1016/j.bcp.2010.12.020, PMID 21219880.

Abdel Aziz AHA, Shouman SA, Attia AS, Saad SF. A study on the reproductive toxicity of erythrosine in male mice. Pharmacol Res. 1997 May;35(5):457-62. doi: 10.1006/phrs.1997.0158, PMID 9299211.

Ekkawy AM, Assoud A, Awahry AM. Mutagenic effects of the food colour erythrosine in rats; 2008.

Gandhi M, Mashru R. Detection of adulterants in red chili powder with special emphasis on qualitative and quantitative estimation of Sudan I Dye in red chili powder. Int J Res Rev. 2019;12:6.

Ertas E, Ozer H, Alasalvar C. A rapid HPLC method for determination of sudan dyes and para red in red chilli pepper. Food Chem. 2007;105(2):756-60. doi: 10.1016/j.foodchem.2007.01.010.

Adjei JK, Ahormegah V, Boateng AK, Megbenu HK, Owusu S. Fast easy cheap robust and safe method of analysis of sudan dyes in chilli pepper powder. Heliyon. 2020;6(10):e05243. doi: 10.1016/j.heliyon.2020.e05243, PMID 33088976.

Tsai CF, Kuo CH, Shih DY. Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry. J Food Drug Anal. 2015;23(3):453-62. doi: 10.1016/j.jfda.2014.09.003, PMID 28911703.

LI J, Ding XM, Liu DD, Guo F, Chen Y, Zhang YB. Simultaneous determination of eight illegal dyes in chili products by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;942-943:46-52. doi: 10.1016/j.jchromb.2013.10.010, PMID 24212142.

Wang L, Zheng J, Zhang Z, Wang T, Che B. Determination of eight sudan dyes in chili powder by UPLC-MS/MS. Engineering. 2013;05(10):154-7. doi: 10.4236/eng.2013.510B033.

LI C, WU YL, Shen JZ. UPLC-ESI-MS/MS analysis of sudan dyes and para red in food. Food Addit Contam Part a Chem Anal Control Expo Risk Assess. 2010 Sep;27(9):1215-20. doi: 10.1080/19440049.2010.483600, PMID 20582780.

Chen D, Zhao Y, Miao H, WU Y. A novel cation exchange polymer as a reversed-dispersive solid phase extraction sorbent for the rapid determination of rhodamine b residue in chili powder and chili oil. J Chromatogr A. 2014;1374:268-72. doi: 10.1016/j.chroma.2014.11.070, PMID 25498558.

Gonzalez Zamora A, Sierra Campos E, Perez Morales R, Vazquez Vazquez C, Gallegos Robles MA, Lopez Martinez JD. Measurement of capsaicinoids in chiltepin hot pepper: a comparison study between spectrophotometric method and high-performance liquid chromatography analysis. J Chem. 2015;2015:1-10. doi: 10.1155/2015/709150.

Sun HW, Wang FC, AI LF. Determination of banned 10 azo-dyes in hot chili products by gel permeation chromatography liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A. 2007;1164(1-2):120-8. doi: 10.1016/j.chroma.2007.06.075, PMID 17692322.

Islam MF, Uddin MN, Rana AA, Karim MM. Development of a chemometric method for the analysis of sudan III-IV dyes adulteration in chili powder using UV-visible spectroscopy data. J Sci Innov Res. 2018;7(2):30-5. doi: 10.31254/jsir.2018.7201.

Rohaeti E, Muzayanah K, Septaningsih DA, Rafi M. Fast analytical method for authentication of chili powder from synthetic dyes using UV-vis spectroscopy in combination with chemometrics. Indones J Chem. 2019;19(3):668-74. doi: 10.22146/ijc.36297.

Liu ZX, Tan J. Qualitative and quantitative detection of sudan I and II adulterated in chili powders by front face synchronous fluorescence spectroscopy: aggregation-induced emission in solid food. Res Square. 2022. doi: 10.21203/rs.3.rs-1539582/v1.

Haughey SA, Galvin King P, HO YC, Bell SE, Elliott CT. The feasibility of using near-infrared and raman spectroscopic techniques to detect fraudulent adulteration of chili powders with sudan dye. Food Control. 2015;48:75-83. doi: 10.1016/j.foodcont.2014.03.047.

Bunaciu AA, Aboul Enein HY, Fleschin S. Recent applications of fourier transform infrared spectrophotometry in herbal medicine analysis. Appl Spectrosc Rev. 2011 Apr;46(4):251-60. doi: 10.1080/05704928.2011.565532.

Dong MY, WU HL, Long WJ, Wang T, YU RQ. Simultaneous and rapid screening and determination of twelve azo dyes illegally added into food products by using chemometrics-assisted HPLC-DAD strategy. Microchem J. 2021 Dec;171:106775. doi: 10.1016/j.microc.2021.106775.

Purwakusumah ED, Rafi M, Safitri UD, Nurcholis W, Adzkiya MA. Identifikasi dan autentikasi jahe merah menggunakan kombinasi spektroskopi ftir dan kemometrik. Purwakusumah. 2014;34(01):82-7. doi: 10.22146/agritech.9526.

Rahmawati A, Kuswandi B, Retnaningtyas Y. Deteksi gelatin babi pada sampel permen lunak jelly menggunakan metode fourier transform infra red (FTIR) dan kemometrik. J Pustaka Kesehat. 2015;3(2):278-83.

Rohman A, Sismindari, Erwanto Y, Che Man YB. Analysis of pork adulteration in beef meatball using fourier transform infrared (FTIR) spectroscopy. Meat Sci. 2011;88(1):91-5. doi: 10.1016/j.meatsci.2010.12.007, PMID 21227596.

Rohman A, Che Man YBC, Yusof FM. The use of FTIR spectroscopy and chemometrics for rapid authentication of extra virgin olive oil. J Am Oil Chem Soc. 2014;91(2):207-13. doi: 10.1007/s11746-013-2370-5.

YE Q, Meng X. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics. Food Chem. 2022;385:132661. doi: 10.1016/j.foodchem.2022.132661, PMID 35299015.

Surek M, Cobre AF, Fachi MM, Santos TG, Pontarolo R, Crisma AR. Propolis authentication of stingless bees by mid-infrared spectroscopy and chemometric analysis. LWT. 2022;161:113370. doi: 10.1016/j.lwt.2022.113370.

Shannon M, Lafeuille JL, Fregiere Salomon A, Lefevre S, Galvin King P, Haughey SA. The detection and determination of adulterants in turmeric using Fourier-transform infrared (FTIR) spectroscopy coupled to chemometric analysis and micro-FTIR imaging. Food Control. 2022;139:109093. doi: 10.1016/j.foodcont.2022.109093.

Gad HA, El Ahmady SH, Abou Shoer MI, Al Azizi MM. Application of chemometrics in authentication of herbal medicines: a review. Phytochem Anal. 2013;24(1):1-24. doi: 10.1002/pca.2378, PMID 22678654.

Zou HB, Yang GS, Qin ZR, Jiang WQ, DU AQ, Aboul Enein HY. Progress in quality control of herbal medicine with IR fingerprint spectra. Anal Lett. 2005;38(9):1457-75. doi: 10.1081/AL-200062153.

Dominguez Martinez I, Meza Marquez OG, Osorio Revilla G, Proal Najera J, Gallardo Velazquez T. Determination of capsaicin ascorbic acid total phenolic compounds and antioxidant activity of Capsicum annuum L. var. serrano by mid-infrared spectroscopy (Mid-FTIR) and chemometric analysis. J Korean Soc Appl Biol Chem. 2014;57(1):133-42. doi: 10.1007/s13765-013-4295-y.

Chen D, WU Z. Study on extraction and purification process of capsicum red pigment. JAS. 2009 Nov;1(2):94. doi: 10.5539/jas.v1n2p94.

Gonzalez Zamora A, Sierra Campos E, Perez Morales R, Vazquez Vazquez C, Gallegos Robles MA, Lopez Martinez JD. Measurement of capsaicinoids in chiltepin hot pepper: a comparison study between spectrophotometric method and high-performance liquid chromatography analysis. J Chem. 2015;2015:1-10. doi: 10.1155/2015/709150.

Wahyuningsih S, Anjani V, Munawaroh H, Purnawan C. Optimization of rhodamine b decolorization by adsorption and Photoelectrodegradation combination system. ALCHEMY J Pen Kim. 2018;14(2):276. doi: 10.20961/alchemy.14.2.16440.277-290.

Zeyada HM, El Mallah HM, Atwee T, El Damhogi DG. Spectroscopic studies of UV irradiated erythrosine B thin films prepared by spin coating technique. Spectrochim Acta a Mol Biomol Spectrosc. 2017;179:120-4. doi: 10.1016/j.saa.2017.02.039, PMID 28237656.

Al Rubaie LA, Mhessn RJ. Synthesis and characterization of azo dye para red and new derivatives. Journal of Chemistry. 2012;9(1):465-70. doi: 10.1155/2012/206076.

Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 6th ed. London: Pearson Education Limited; 2010.

Published

18-11-2024

How to Cite

ADISTI, S. T., RAHAYU, W. S., UTAMI, P. I., & DJALIL, A. D. (2024). FOURIER TRANSFORM INFRARED SPECTROSCOPY AND CHEMOMETRICS FOR AUTHENTICATING CHILI POWDER FROM RHODAMINE B, ERYTHROSINE B, AND PARARED. International Journal of Applied Pharmaceutics, 16(06), 49–55. https://doi.org/10.22159/ijap.2024.v16s6.TY2006

Issue

Section

Original Article(s)

Most read articles by the same author(s)