EXPLORING THE POTENTIAL OF 3D PRINTING IN PHARMACEUTICAL DEVELOPMENT
DOI:
https://doi.org/10.22159/ijcpr.2023v15i6.3085Keywords:
Additive manufacturing, Personalized medicine, Fused deposition modeling, Polypills, Polymers, Dosage forms, Types of 3DP, Regulatory guidelines, Materials in 3DPAbstract
Pharmaceuticals have been transformed by additive manufacturing, often known as three-dimensional printing (3DP) a disruptive technology. The concept of additive manufacturing is examined, with a focus on its potential for quick prototyping, cost savings, and development of customized medicines. In the pharmaceutical industry 3DP is used to develop numerous dosage forms and drug delivery systems including oral films, controlled-release tablets and transdermal patches. It also makes it possible to produce specialized medical prosthetics, implants and gadgets. The applications of various 3DP types such as material extrusion, material jetting, binder jet printing and powder-based procedures like selective laser sintering, are thoroughly covered. This review assesses the compatibility of the common 3DP materials for pharmaceutical applications including hydroxypropyl methylcellulose, hydroxypropyl cellulose, Carbopol and Eudragit. This review article forecasts 3DP prospects and shortcomings. The technology's continued development and use in the pharmaceutical industry and other industries will depend on overcoming regulatory challenges, creating standardized procedures and optimizing material alternatives. By tackling these issues 3DP has a great deal of potential to revolutionize personalized medicine, medical device production and variety of other industries ultimately leading to better patient outcomes and healthcare solutions. Types and principles, materials, applications, scalability, regulatory compliance and potential future challenges are discussed in this review paper.
Downloads
References
Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016 Jul 2;42(7):1019-31. doi: 10.3109/03639045.2015.1120743, PMID 26625986.
Berman B. 3-D printing: the new industrial revolution. Bus Horiz. 2012 Mar;55(2):155-62. doi: 10.1016/j.bushor.2011.11.003.
Jamroz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications-recent achievements and challenges. Pharm Res. 2018;35(9). doi: 10.1007/s11095-018-2454-x.
Chen G, Xu Y, Chi Lip Kwok P, Kang L. Pharmaceutical applications of 3D printing. Addit Manuf. 2020 Aug;34:101209. doi: 10.1016/j.addma.2020.101209.
Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci. 2018 Jun;118:134-43. doi: 10.1016/j.ejps.2018.03.010, PMID 29540300.
Park BJ, Choi HJ, Moon SJ, Kim SJ, Bajracharya R, Min JY. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2018 Oct 29. doi: 10.1007/s40005-018-00414-y.
Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019 Oct 3;16(10):1081-94. doi: 10.1080/17425247.2019.1660318, PMID 31478752.
Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech. 2021;22(1):49. doi: 10.1208/s12249-020-01905-8, PMID 33458797.
Al Su A, Aref SJ. History of 3D printing. In: Elsevier. 3D printing applications in cardiovascular medicine; 2018. p. 1-10. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128039175000018. [Last accessed on 08 May 2023]
Carl Deckard selected for AMUG innovators award; 2016. Available from: https://additivemanufacturing.com/2016/11/03/carl-deckard-selected-for-amug-innovators-award.
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207958Orig1s000TOC.cfm.
Mwema FM, Akinlabi ET. Basics of fused deposition modelling (FDM); 2020. p. 1-15.
Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015 Dec;2(4):041101. doi: 10.1063/1.4935926.
Shakor P, Sanjayan J, Nazari A, Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction and Building Materials. 2017 May;138:398-409. doi: 10.1016/j.conbuildmat.2017.02.037.
Yasa E. Selective laser melting. In: Additive manufacturing. Elsevier; 2021. p. 77-120.
Gu P, Zhang X, Zeng Y, Ferguson B. Quality analysis and optimization of solid ground curing process. J Manuf Syst. 2001 Jan;20(4):250-63. doi: 10.1016/S0278-6125(01)80045-5.
Galati M. Electron beam melting process. In: Additive manufacturing. Elsevier; 2021. p. 277-301.
Prince JD. 3D printing: an industrial revolution. J Electron Resour Med Libr. 2014 Jan 11;11(1):39-45. doi: 10.1080/15424065.2014.877247.
Gurr M, Mülhaupt R. Rapid prototyping. In: Polymer science: a comprehensive reference. Elsevier; 2012. p. 77-99.
He Y, Zhong FJ, Feng GW, Wei LZ. Optimization of tool-path generation for material extrusion-based additive manufacturing technology. Jin Yan Addit Manuf. 2014;1:32-47.
Kjar A, Huang Y. Application of micro-scale 3D printing in pharmaceutics. Pharmaceutics. 2019;11(8):390. doi: 10.3390/pharmaceutics11080390, PMID 31382565.
Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech. 2021;22(1):49. doi: 10.1208/s12249-020-01905-8, PMID 33458797.
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. doi: 10.1038/nbt.2958, PMID 25093879.
Ahn SH, Lee HJ, Lee JS, Yoon H, Chun W, Kim GH. A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures. Sci Rep. 2015;5(1):13427. doi: 10.1038/srep13427, PMID 26293341.
Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217-39. doi: 10.1016/j.biotechadv.2016.12.006, PMID 28057483.
Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720-42. doi: 10.1039/c6lc00163g, PMID 27101171.
Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1-2):376-94. doi: 10.1016/j.ijpharm.2015.12.071, PMID 26757150.
Kotta S, Nair A, Alsabeelah N. 3D printing technology in drug delivery: recent progress and application. Curr Pharm Des. 2018;24(42):5039-48. doi: 10.2174/1381612825666181206123828, PMID 30520368.
Azizi Machekposhti S, Mohaved S, Narayan RJ. Inkjet dispensing technologies: recent advances for novel drug discovery. Expert Opin Drug Discov. 2019;14(2):101-13. doi: 10.1080/17460441.2019.1567489, PMID 30676831.
Içten E, Giridhar A, Taylor LS, Nagy ZK, Reklaitis GV. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. J Pharm Sci. 2015;104(5):1641-9. doi: 10.1002/jps.24367, PMID 25639605.
Acosta Velez GF, Wu BM. 3D pharming: direct printing of personalized pharmaceutical tablets. Polym Sci. 2016;2(1):11.
Vadodaria S, Mills T. Jetting-based 3D printing of edible materials. Food Hydrocoll. 2020;106:105857. doi: 10.1016/j.foodhyd.2020.105857.
Trenfield SJ, Madla CM, Basit AW, Gaisford S. Binder jet printing in pharmaceutical manufacturing. 3D Printing of Pharmaceuticals; 2018. p. 41-54.
Lee KJ, Kang A, Delfino JJ, West TG, Chetty D, Monkhouse DC. Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form. Drug Dev Ind Pharm. 2003;29(9):967-79. doi: 10.1081/ddc-120025454, PMID 14606661.
Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S. 3D‐printing of functional biomedical microdevices via light‐and extrusion‐based approaches. Small Methods. 2018;2(2):1700277. doi: 10.1002/smtd.201700277, PMID 30090851.
Bártolo PJ. Stereolithography: materials, processes and applications. Springer Science+Business Media; 2011.
Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245-56. doi: 10.1007/s11517-012-1001-x, PMID 23250790.
Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101-7. doi: 10.1016/j.ijpharm.2018.02.015, PMID 29454028.
Regenfuss P, Streek A, Hartwig L, Klötzer S, Brabant T, Horn M. Principles of laser micro sintering. Rapid Prototyp J. 2007;13(4):204-12. doi: 10.1108/13552540710776151.
Balasubramanian KR, Senthilkumar V. Additive manufacturing applications for metals and composites. IGI Global; 2020.
Wang D, Yang Y, Liu R, Xiao D, Sun J. Study on the designing rules and processability of porous structure based on selective laser melting (SLM). J Mater Process Technol. 2013;213(10):1734-42. doi: 10.1016/j.jmatprotec.2013.05.001.
Wickstrom H, Koppolu R, Makila E, Toivakka M, Sandler N. Stencil printing-a novel manufacturing platform for orodispersible discs. Pharmaceutics. 2020;12(1):33. doi: 10.3390/pharmaceutics12010033, PMID 31906316.
Madzarevic M, Medarevic D, Vulovic A, Sustersic T, Djuris J, Filipovic N. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks. Pharmaceutics. 2019;11(10):544. doi: 10.3390/pharmaceutics11100544, PMID 31635414.
Rycerz K, Stepien KA, Czapiewska M, Arafat BT, Habashy R, Isreb A. Embedded 3D printing of novel bespoke soft dosage form concept for pediatrics. Pharmaceutics. 2019;11(12):630. doi: 10.3390/pharmaceutics11120630, PMID 31779123.
Oblom H, Sjoholm E, Rautamo M, Sandler N. Towards printed pediatric medicines in hospital pharmacies: comparison of 2d and 3d-printed orodispersible warfarin films with conventional oral powders in unit dose sachets. Pharmaceutics. 2019;11(7):334. doi: 10.3390/pharmaceutics11070334, PMID 31337146.
Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharm Pharmacol. 2005;57(5):533-46. doi: 10.1211/0022357055957, PMID 15901342.
Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2-3):139-57. doi: 10.1016/s0169-409x(01)00112-0, PMID 11369079.
Picker Freyer KM, Durig T. Physical mechanical and tablet formation properties of hydroxypropylcellulose: in pure form and in mixtures. AAPS PharmSciTech. 2007;8(4):E92. doi: 10.1208/pt0804092, PMID 18181552.
Guirguis OW, Moselhey MTH. Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. NS. 2012;04(1):57-67. doi: 10.4236/ns.2012.41009.
Panzade P, Puranik PK. Carbopol polymers: a versatile polymer for pharmaceutical applications. Res J Pharm Technol. 2010;3(3):672-5.
Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials–process perspective. Pharmaceutics. 2020;12(2):124. doi: 10.3390/pharmaceutics12020124, PMID 32028732.
Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019-31. doi: 10.3109/03639045.2015.1120743, PMID 26625986.
Dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit®: a versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics. 2021;13(9):1424. doi: 10.3390/pharmaceutics13091424, PMID 34575500.
Patlolla A, Collins G, Arinzeh TL. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater. 2010;6(1):90-101. doi: 10.1016/j.actbio.2009.07.028, PMID 19631769.
Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41-8. doi: 10.1016/j.jconrel.2016.05.034, PMID 27189134.
Matijasic G, Gretic M, Vincic J, Poropat A, Cuculic L, Rahelic T. Design and 3D printing of multi-compartmental PVA capsules for drug delivery. J Drug Deliv Sci Technol. 2019;52:677-86. doi: 10.1016/j.jddst.2019.05.037.
Goyanes A, Kobayashi M, Martínez Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514(1):290-5. doi: 10.1016/j.ijpharm.2016.06.021, PMID 27863674.
Kempin W, Franz C, Koster LC, Schneider F, Bogdahn M, Weitschies W. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm. 2017;115:84-93. doi: 10.1016/j.ejpb.2017.02.014, PMID 28232106.
Hardung H, Djuric D, Ali S. Combining HME and solubilization: soluplus®-the solid solution. Drug Deliv Technol. 2010;10(3):20-7.
Pelras T, Glass S, Scherzer T, Elsner C, Schulze A, Abel B. Transparent low molecular weight poly(ethylene glycol) diacrylate-based hydrogels as film media for photoswitchable drugs. Polymers. 2017;9(12):639. doi: 10.3390/polym9120639, PMID 30965940.
Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832-64. doi: 10.1002/polb.22259, PMID 21769165.
Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications-a comprehensive review. Adv Drug Deliv Rev. 2016;107:367-92. doi: 10.1016/j.addr.2016.06.012, PMID 27356150.
Fu J, Yin H, Yu X, Xie C, Jiang H, Jin Y. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. 2018;549(1-2):370-9. doi: 10.1016/j.ijpharm.2018.08.011, PMID 30107218.
Yu DG, Zhu LM, Branford White CJ, Yang XL. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666-90. doi: 10.1002/jps.21284, PMID 18257041.
Seoane Viano I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: from hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-75. doi: 10.1016/j.addr.2021.05.003, PMID 33965461.
Solanki NG, Tahsin M, Shah AV, Serajuddin ATM. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci. 2018;107(1):390-401. doi: 10.1016/j.xphs.2017.10.021, PMID 29066279.
Siamidi A, Tsintavi ME, Rekkas D, Vlachou M. 3D-printed modified-release tablets: a review of the recent advances. Mol Pharmacol. 2020:1-13.
Chen G, Xu Y, Chi Lip Kwok PCL, Kang L. Pharmaceutical applications of 3D printing. Addit Manuf. 2020;34:101209. doi: 10.1016/j.addma.2020.101209.
Goyanes A, Robles Martinez PR, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657-63. doi: 10.1016/j.ijpharm.2015.04.069, PMID 25934428.
Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446-56. doi: 10.1002/jps.20864, PMID 17497729.
Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: from drug product design to in vivo testing. J Control Release. 2017;268:40-8. doi: 10.1016/j.jconrel.2017.10.003, PMID 28993169.
Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage forms fabricated by three dimensional printingTM. J Control Release. 2000;66(1):11-7. doi: 10.1016/s0168-3659(99)00224-2, PMID 10708874.
Rahman Z, Barakh Ali SF, Ozkan T, Charoo NA, Reddy IK, Khan MA. Additive manufacturing with 3D printing: progress from bench to bedside. AAPS J. 2018;20(6):101. doi: 10.1208/s12248-018-0225-6, PMID 30209693.
Tian P, Yang F, Xu Y, Lin MM, Yu LP, Lin W. Oral disintegrating patient-tailored tablets of warfarin sodium produced by 3D printing. Drug Dev Ind Pharm. 2018;44(12):1918-23. doi: 10.1080/03639045.2018.1503291, PMID 30027774.
Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101-7. doi: 10.1016/j.ijpharm.2018.02.015, PMID 29454028.
Chen G, Xu Y, Chi Lip Kwok PCL, Kang L. Pharmaceutical applications of 3D printing. Addit Manuf. 2020;34:101209. doi: 10.1016/j.addma.2020.101209.
Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1-2):325-32. doi: 10.1016/j.ijpharm.2017.10.037, PMID 29051121.
Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 2017;7(1):2829. doi: 10.1038/s41598-017-03097-x, PMID 28588251.
Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release. 2017;268:10-8. doi: 10.1016/j.jconrel.2017.10.008, PMID 29030223.
Pereira BC, Isreb A, Forbes RT, Dores F, Habashy R, Petit JB. ‘Temporary Plasticiser’: a novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur J Pharm Biopharm. 2019;135:94-103. doi: 10.1016/j.ejpb.2018.12.009.
Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. 2015;30:360-7. doi: 10.1016/j.jddst.2015.07.016.
Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Fabrication of floating capsule-in- 3D-printed devices as gastro-retentive delivery systems of amoxicillin. J Drug Deliv Sci Technol. 2020;55:101393. doi: 10.1016/j.jddst.2019.101393.
Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: an appealing route for customized drug delivery systems. Int J Pharm. 2020;588:119732. doi: 10.1016/j.ijpharm.2020.119732, PMID 32768528.
Lim SH, Tiew WJ, Zhang J, Ho PCL, Kachouie NN, Kang L. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide. Biofabrication. 2020;12(3):035003. doi: 10.1088/1758-5090/ab6d37, PMID 31952064.
Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech. 2021;22(1):49. doi: 10.1208/s12249-020-01905-8, PMID 33458797.
El Aita I, Breitkreutz J, Quodbach J. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm. 2019;134:29-36. doi: 10.1016/j.ejpb.2018.11.008. PMID 30439504.
Sandler N, Preis M. Printed drug-delivery systems for improved patient treatment. Trends Pharmacol Sci. 2016;37(12):1070-80. doi: 10.1016/j.tips.2016.10.002, PMID 27992318.
Chung JJ, Im H, Kim SH, Park JW, Jung Y. Toward biomimetic scaffolds for tissue engineering: 3D printing techniques in regenerative medicine. Front Bioeng Biotechnol. 2020;8:1-12.
Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547-55. doi: 10.1016/j.drudis.2018.05.025, PMID 29803932.
Lemu HG, Kurtovic S. {3D} Printing for rapid manufacturing; 2012. p. 470–9.
Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704-11, PMID 25336867.
Science PS, Fusion C, Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A. 3D printing PLGA-a quantitative examination of the effects of polymer composition and. Mater Des. 2021;11(20):5035-40. doi: 10.1016/j.matdes.2020.109338.
Cui M, Pan H, Su Y, Fang D, Qiao S, Ding P. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B. 2021;11(8):2488-504. doi: 10.1016/j.apsb.2021.03.015, PMID 34567958.
Paxton NC. Navigating the intersection of 3D printing, software regulation and quality control for point-of-care manufacturing of personalized anatomical models. 3D Print Med. 2023;9(1):9. doi: 10.1186/s41205-023-00175-x, PMID 37024730.
Wu HC, TCTC. Article information: about emerald www.emeraldinsight.com Quality control problems in 3D printing manufacturing: a review. Qual Control. 2017.
Ballardini RM, Lindman J, Ituarte IF. Co-creation, commercialization and intellectual property-challenges with 3D printing. Eur J Law Technol. 2016;7(3):1-39.
Choonara YE, Du Toit LC, Kumar P, Kondiah PPD, Pillay V. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res. 2016;16(1):23-32. doi: 10.1586/14737167.2016.1138860, PMID 26817398.
Amza CG, Zapciu A, Baciu F, Vasile MI, Popescu D. Aging of 3d printed polymers under sterilizing UV-C radiation. Polymers (Basel). 2021;13(24):1-16. doi: 10.3390/polym13244467, PMID 34961017.
Khan FA, Narasimhan K, Swathi CSV, Mustak S, Mustafa G, Ahmad MZ. 3D printing technology in customized drug delivery system: current state of the art, prospective and the challenges. Curr Pharm Des. 2018;24(42):5049-61. doi: 10.2174/1381612825666190110153742, PMID 30636582.
Kissi EO, Nilsson R, Nogueira LP, Larsson A, Tho I. Influence of drug load on the printability and solid-state properties of 3D-printed naproxen-based amorphous solid dispersion. Molecules. 2021;26(15). doi: 10.3390/molecules26154492, PMID 34361646.
Dizon JRC, Gache CCL, Cascolan HMS, Cancino LT, Advincula RC. Post-processing of 3D-printed polymers. Technologies. 2021;9(3). doi: 10.3390/technologies9030061.
Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res. 2018;36(1):4. doi: 10.1007/s11095-018-2531-1, PMID 30406349.
Varghese R, Sood P, Salvi S, Karsiya J, Kumar D. 3D printing in the pharmaceutical sector: advances and evidences. Sensors International. 2022;3. doi: 10.1016/j.sintl.2022.100177.
Ballardini RM, Mimler M, Minssen T, Salmi M. 3D printing, intellectual property rights and medical emergencies: In Search of New Flexibilities. IIC Int Rev Ind Prop Copyr Law. 2022;53(8):1149-73. doi: 10.1007/s40319-022-01235-1, PMID 36065358.
Khairuzzaman A. Regulatory perspectives on 3D printing in pharmaceuticals. AAPS Adv Pharm Sci Ser. 2018;31:215-36. doi: 10.1007/978-3-319-90755-0_11.
Prasanthi Nori L, Manikiran SS. An outlook on regulatory aspects of 3D printing in pharmaceutical and medical sectors. CTPPC. 2022;4(3):98-108. doi: 10.18231/j.ctppc.2022.017.
van Riet Nales DA, van den Bemt B, van Bodegom D, Cerreta F, Dooley B, Eggenschwyler D. Commentary on the EMA reflection paper on the pharmaceutical development of medicines for use in the older population. Br J Clin Pharmacol. 2022;88(4):1500-14. doi: 10.1111/bcp.15207, PMID 35141926.
Biglino G, Hopfner C, Lindhardt J, Moscato F, Munuera J, Oberoi G. Perspectives on medical 3D printing at the point-of-care from the new European 3D printing special interest group. 3D Print Med. 2023;9(1):14. doi: 10.1186/s41205-022-00167-3, PMID 37142797.
Longhitano GA, Nunes GB, Candido G, da Silva JVL. The role of 3D printing during COVID-19 pandemic: a review. Prog Addit Manuf. 2021;6(1):19-37. doi: 10.1007/s40964-020-00159-x.
Schuh JCL, Funk KA. Compilation of international standards and regulatory guidance documents for evaluation of biomaterials, medical devices, and 3-D printed and regenerative medicine products. Toxicol Pathol. 2019;47(3):344-57. doi: 10.1177/0192623318804121, PMID 30392453.
Bhat S, Venkatesh MP, Balamuralidhara V, Kumar TMP. Comparison of 3D printing in USA, Europe and Australia and IPR. J Pharm Sci Res. 2019;11(7):2515-20.
Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25(9):1668-81. doi: 10.1016/j.drudis.2020.07.007, PMID 32687871.
Tevetia N, Bhatt S, Pathak A, Prakash S, Bhardwaj A, Tyagi M. Global prospective of medical devices and their regulations. Int J Health Sci. 2022;6:2764-78. doi: 10.53730/ijhs.v6nS6.9957.
https://www.manufacturingtodayindia.com/people/9363-regulations-for-3d-printing.
https://www.oandp.com/articles/news_2016-05-13_01.asp?cv=1andmf=0.
Published
How to Cite
Issue
Section
Copyright (c) 2023 ANJALI KURIL, ANJU AMBEKAR, BHARATI NIMASE, PRACHI GIRI, PRAJWAL NIKAM, HARITA DESAI, SHUBHANGI AHER
This work is licensed under a Creative Commons Attribution 4.0 International License.